Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single virus used to convert adult cells to embryonic stem cell-like cells

17.12.2008
Whitehead Institute researchers have greatly simplified the creation of so-called induced pluripotent stem (iPS) cells, cutting the number of viruses used in the reprogramming process from four to one. Scientists hope that these embryonic stem-cell-like cells could eventually be used to treat such ailments as Parkinson's disease and diabetes.

The earliest reprogramming efforts relied on four separate viruses to transfer genes into the cells' DNA--one virus for each reprogramming gene (Oct4, Sox2, c-Myc and Klf4). Once activated, these genes convert the cells from their adult, differentiated status to an embryonic-like state.

However, this method poses significant risks for potential use in humans. The viruses used in reprogramming are associated with cancer because they may insert DNA anywhere in a cell's genome, thereby potentially triggering the expression of cancer-causing genes, or oncogenes. For iPS cells to be employed to treat human diseases, researchers must find safe alternatives to reprogramming with such viruses. This latest technique represents a significant advance in the quest to eliminate the potentially harmful viruses.

Bryce Carey, an MIT graduate student working in the lab of Whitehead Member Rudolf Jaenisch, spearheaded the effort by joining in tandem the four reprogramming genes through the use of bits of DNA that code for polymers known as 2A peptides. Working with others in the lab, he then manufactured a so-called polycistronic virus capable of expressing all four reprogramming genes once it is inserted into the genomes of mature mouse and human cells.

When the cells' protein-creating machinery reads the tandem genes' DNA, it begins making a protein. However, when it tries to read the 2A peptide DNA that resides between the genes, the machinery momentarily stops, allowing the first gene's protein to be released. The machinery then moves on to the second gene, creates that gene's protein, stalls when reaching another piece of 2A peptide DNA, and releases the second gene's protein. The process continues until the machinery has made the proteins for all four genes.

Using the tandem genes, Carey created iPS cells containing just a single copy of the polycistronic vector instead of multiple integrations of the viruses. This significant advancement indicates that the approach can become even safer if combined with technologies such as gene targeting, which allows a single transgene to be inserted at defined locations.

Interestingly, while Carey's single-virus method integrates all four genes into the same location, it has proven to be roughly 100 times less efficient than older approaches to reprogramming. This phenomenon remains under investigation.

"We were surprised by the lower efficiency," Carey says. "We're not sure why, but we need to look what's going on with expression levels of the polycistronic virus's proteins compared to separate viruses' proteins."

Although the one virus method is less efficient, Jaenisch maintains it represents an important advance in the field.

"This is an extremely useful tool for studying the mechanisms of reprogramming," says Jaenisch, who is also a professor of biology at MIT. "Using this one virus creates a single integration in the cells' DNA, which makes things much easier to handle."

Nicole Giese | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>