Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-stranded DNA-binding protein proven dynamic, critical to DNA repair

22.10.2009
Researchers report that a single-stranded DNA-binding protein (SSB), once thought to be a static player among the many molecules that interact with DNA, actually moves back and forth along single-stranded DNA, gradually allowing other proteins to repair, recombine or replicate the strands.

Their study, of SSB in the bacterium Escherichia coli, appears today in the journal Nature.

Whenever the double helix of DNA unravels, exposing each strand to the harsh environment of the cell, SSB is usually first on the scene, said University of Illinois physics professor and Howard Hughes Medical Institute investigator Taekjip Ha, who led the study.

Although DNA unwinding is necessary for replication or recombination, it is normally a transient process, he said. Exposed single-stranded DNA (ssDNA) can be damaged or degraded by enzymes in the cell. Damaged DNA may also come unwound, and ssDNA can bond to itself, forming hairpin loops and other problematic structures.

“If you have lots of single-stranded DNA in the cell, basically it’s a sign of trouble,” Ha said. “SSB needs to come and bind to it to protect it from degradation and to control what kind of proteins have access to the single-stranded DNA.”

Although other proteins are known to travel along double-stranded DNA, this is the first study to find a protein that migrates back and forth randomly on single-stranded DNA, Ha said.

Other researchers had assumed that SSB simply bound to DNA where it was needed and then fell off when its job was done. But a collaborator on the new study who has studied SSB for two decades, Timothy Lohman, of Washington University School of Medicine, suspected that the protein’s interaction with DNA was more dynamic. That hunch turned out to be true, Ha said.

The SSB protein is made up of four identical subunits. Single-stranded DNA loops around and through them in a pattern “that looks like the seam on a baseball,” Ha said. The DNA entry and exit points are very close to one another, making it possible to track the interaction of ssDNA and SSB using a technique called fluorescence resonance energy transfer (FRET).

FRET makes use of fluorescent molecules whose signals vary in intensity depending on their proximity to one another. By labeling different lengths of ssDNA with red and green dyes about 65 nucleotides apart (the length of ssDNA that threads through the SSB) and tracking the FRET signal as these single DNA molecules were exposed to SSB, the researchers were able to track the movement of SSB in relation to the single-stranded DNA.

In a series of experiments, the researchers showed that SSB diffuses randomly back and forth along single-stranded DNA, and that this movement is independent of the sequence of nucleotides that make up the DNA. They also found that an important DNA repair protein in E. coli, RecA, grows along the ssDNA in tandem with the movement of SSB. As the RecA protein extends along the DNA strand it prevents the backward movement of the SSB.

The researchers also found that SSB can “melt” small hairpin loops that appear in single-stranded DNA, straightening them so that the RecA protein can bind to and repair them. In this way SSB modulates the activity of RecA and other proteins that are involved in DNA repair, recombination and replication.

“SSB may be a master coordinator of all these important processes,” Ha said.

This research was supported by the National Science Foundation, the Howard Hughes Medical Institute and the National Institutes of Health. The study is a project of the NSF-funded Center for the Physics of Living Cells at the University of Illinois, which Ha co-directs with U. of I. physics professor Klaus Schulten. Ha also is an affiliate of the Institute for Genomic Biology.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>