Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single protein promotes resistance to widely used anti-estrogen drugs

02.07.2012
Researchers at Georgetown Lombardi Comprehensive Cancer Center have uncovered a single molecule they say is a major determinant of resistance to anti-estrogen therapy used to treat or prevent breast cancer in high-risk women.

In the July 1 issue of Cancer Research, the scientists say glucose-regulated protein 78 (GRP78), activated as breast cells undergo stress induced by the agents tamoxifen and fulvestrant, turns off apoptosis, a cell death response, and turns on autophagy. In autophagy, the cell "eats" and digests components within the cell body that have been harmed by the drugs, thus providing a blast of nutrients needed to maintain life.

The finding suggests that a novel agent that inhibits GRP78 might provide a solution for the tens of thousands of women who develop resistance to anti-estrogen drugs. While more than 70 percent of breast cancers express estrogen receptors that fuel growth of cancer, about one-third of these cases fail to be cured by therapies that target this receptor.

"Since GRP78 plays such an important role in drug resistance, it would be of great benefit to develop agents that target this protein," says the study's lead author, Katherine Cook, Ph.D., a postdoctoral investigator in the lab of Robert Clarke, Ph.D., D.Sc., professor of oncology and Dean for Research at Georgetown University Medical Center. Clarke is the study's senior author.

She adds that several GRP78 inhibitors have already been developed and are already being tested, but not yet at the level of human clinical trials.

The study is not only the first to show that GRP78 is a regulator of resistance to tamoxifen and fulvestrant, it is also the first to reveal the mechanism by which GRP78 directly controls autophagy, says Clarke.

"Why estrogen-receptor positive breast tumors fail to respond, or respond initially and progress upon acquiring resistance to these agents, has been largely unknown, " he says. "The novel signaling that we have uncovered could have high translational impact and bring a new and important perspective to the molecular crosstalk between cell stress, apoptosis, and autophagy."

This research is a continuation of a string of studies on anti-estrogen resistance by Clarke, Cook, and their collaborators at Georgetown.

A paper published March 15 in Cancer Research, for example, described how a program known as the "unfolded protein response" or UPR, is activated in breast cells treated with the therapies once these cells sense stress. This response is activated when there is an accumulation of unfolded or misfolded proteins within the cell.

"Since cancers often grow rapidly, tumors may lack enough energy to properly fold proteins into the correct orientation. These misfolded proteins accumulate in the cell and trigger UPR," says Cook. "In normal cells, UPR is protective and if the stimuli lasts for an extended period of time UPR becomes pro-death. But we have found cancers use the UPR to promote survival."

In this study, the scientists zeroed in on GRP78 as the master regulator of UPR, thus promoting anti-estrogen resistance. It does this by preventing stressed cells to initiate programmed cell death, and by stimulating autophagy, which clears cells of the misfolded proteins while providing beneficial nutrition to the cell.

When the scientists inhibited GRP78 in anti-estrogen resistant cells, they promoted cell death and inhibited autophagy, resulting in increased numbers of dead cells.

They also found that GRP78 does not play a role in breast cancers that never responded to anti-estrogen therapy, indicating that initial resistance and acquired resistance represent separate biological phenomenon. "This observation is consistent with the emerging concept that acquired resistance may be an adaptive response," Cook says.

She also notes that elevated GRP78 has been found in different cancer types, in addition to breast cancer, and in resistance to several different chemotherapy treatments.

"The basic principle we establish of using GRP78 to integrate the cellular functions of apoptosis and autophagy raises the provocative question that this signaling may be widely applicable and represent a major stress response," Cook says.

Other investigators who contributed to the research are Ayesha N. Shajahan Ph.D., Anni Wärri Ph.D., Lu Jin M.S., and Leena A. Hilakivi-Clarke Ph.D., of the department of oncology at Georgetown Lombardi Comprehensive Medical Center. The authors report having no personal financial interests related to the study. This research was supported by NCI grants Clarke (R01-CA131465 and U54-CA149147). Cook was supported by a National Institutes of Health (NIH)/National Cancer Institute (NCI) training grant (5-T32-CA009686), and she is a recipient of a Department of Defense Breast Cancer Research Program Postdoctoral Fellowship (BC112023).

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 40 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington, DC, area. For more information, go to http://lombardi.georgetown.edu.
About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.

Karen Mallet | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>