Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single parenthood doesn't pay off for plants

09.11.2010
Plants that can pollinate themselves are more likely to go extinct, says new study of nightshade plant family

Many plants can pollinate themselves and reproduce without the aid of a mate, thanks to having both male and female parts. But the short-term perks of being able to go it alone come with long-term costs, says a new study in the journal Science. The reason is because plants that can pollinate themselves are more prone to extinction, scientists say.

Flowering plants are incredibly creative when it comes to sex, said co-author Boris Igic, a biologist at the University of Illinois at Chicago. "Plants just can't walk over to potential mates like we do. Many species rely on wind or pollinators coming to them."

About half of all flowering plants have another option, said Igic — they can fertilize themselves.

Being able to have sex with yourself has some surprising short-term perks, scientists say. Plants that can pollinate themselves can still produce seeds, even when wind or insects don't deliver.

"You don't need a partner to reproduce," said co-author Emma Goldberg of the University of Illinois at Chicago.

"And because you're both the mother and the father of your own seeds, as well as the father of other plants' seeds, you also pass on more copies of your genes." Goldberg added.

Previous work by Igic and others found that many members of the nightshade family — a group that includes potatoes, peppers, tomatoes, and tobacco — gain the ability to mate with themselves over evolutionary time.

"We see a one-way transition where self-incompatible species turn into self-compatible species, but aren't able to go back," said Goldberg.

But what are the long-term consequences of being able to mate with yourself, rather than relying on a partner?

"We wanted to know what happens when species stop relying on other individuals to reproduce," said co-author Stephen Smith, who conducted the study while at the National Evolutionary Synthesis Center in Durham, NC.

To find out, the researchers compared speciation and extinction rates for nightshade species that mate exclusively with other plants, versus species that can pollinate themselves.

The result? Despite the short-term benefits of solitary sex, the single parent option has serious pitfalls over time. "Species that can pollinate themselves have much higher extinction rates," said Igic.

One reason why self-compatible lineages are more likely to die off, the researchers say, may be a lack of genetic diversity. Plants that can pollinate themselves are less likely to inherit the genetic variants that enable them to adapt to changing environments, Smith explained.

"It's like playing the stock market," he added. "If you put all your eggs in one basket you might win big in the short term. But if you don't maintain a diverse portfolio, in the long run you're less able to endure the market's ups and downs."

The scientists describe their findings in the October 22 issue of Science.

Other authors of this study include Kelly Robertson of the University of Illinois at Chicago, Joshua Kohn of the University of California at San Diego, and Russell Lande of Imperial College London.

CITATION: Goldberg, E., J. Kohn, et al. (2010). "Species selection maintains self-incompatibility." Science 330(6003): 493 - 495. http://dx.doi.org/DOI:10.1126/science.1194513.

Study data are available in the Dryad Digital Repository at http://www.datadryad.org/handle/10255/dryad.1888

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>