Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single parenthood doesn't pay off for plants

09.11.2010
Plants that can pollinate themselves are more likely to go extinct, says new study of nightshade plant family

Many plants can pollinate themselves and reproduce without the aid of a mate, thanks to having both male and female parts. But the short-term perks of being able to go it alone come with long-term costs, says a new study in the journal Science. The reason is because plants that can pollinate themselves are more prone to extinction, scientists say.

Flowering plants are incredibly creative when it comes to sex, said co-author Boris Igic, a biologist at the University of Illinois at Chicago. "Plants just can't walk over to potential mates like we do. Many species rely on wind or pollinators coming to them."

About half of all flowering plants have another option, said Igic — they can fertilize themselves.

Being able to have sex with yourself has some surprising short-term perks, scientists say. Plants that can pollinate themselves can still produce seeds, even when wind or insects don't deliver.

"You don't need a partner to reproduce," said co-author Emma Goldberg of the University of Illinois at Chicago.

"And because you're both the mother and the father of your own seeds, as well as the father of other plants' seeds, you also pass on more copies of your genes." Goldberg added.

Previous work by Igic and others found that many members of the nightshade family — a group that includes potatoes, peppers, tomatoes, and tobacco — gain the ability to mate with themselves over evolutionary time.

"We see a one-way transition where self-incompatible species turn into self-compatible species, but aren't able to go back," said Goldberg.

But what are the long-term consequences of being able to mate with yourself, rather than relying on a partner?

"We wanted to know what happens when species stop relying on other individuals to reproduce," said co-author Stephen Smith, who conducted the study while at the National Evolutionary Synthesis Center in Durham, NC.

To find out, the researchers compared speciation and extinction rates for nightshade species that mate exclusively with other plants, versus species that can pollinate themselves.

The result? Despite the short-term benefits of solitary sex, the single parent option has serious pitfalls over time. "Species that can pollinate themselves have much higher extinction rates," said Igic.

One reason why self-compatible lineages are more likely to die off, the researchers say, may be a lack of genetic diversity. Plants that can pollinate themselves are less likely to inherit the genetic variants that enable them to adapt to changing environments, Smith explained.

"It's like playing the stock market," he added. "If you put all your eggs in one basket you might win big in the short term. But if you don't maintain a diverse portfolio, in the long run you're less able to endure the market's ups and downs."

The scientists describe their findings in the October 22 issue of Science.

Other authors of this study include Kelly Robertson of the University of Illinois at Chicago, Joshua Kohn of the University of California at San Diego, and Russell Lande of Imperial College London.

CITATION: Goldberg, E., J. Kohn, et al. (2010). "Species selection maintains self-incompatibility." Science 330(6003): 493 - 495. http://dx.doi.org/DOI:10.1126/science.1194513.

Study data are available in the Dryad Digital Repository at http://www.datadryad.org/handle/10255/dryad.1888

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>