Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-Neuron “Hub” Orchestrates Activity of an Entire Brain Circuit

30.09.2014

TAU maps precise triggers that activate and neutralize brain cell networks

The idea of mapping the brain is not new. Researchers have known for years that the key to treating, curing, and even preventing brain disorders such as Alzheimer's disease, epilepsy, and traumatic brain injury, is to understand how the brain records, processes, stores, and retrieves information.


New Tel Aviv University research published in PLOS Computational Biology makes a major contribution to efforts to navigate the brain. The study, by Prof. Eshel Ben-Jacob and Dr. Paolo Bonifazi of TAU's School of Physics and Astronomy and Sagol School of Neuroscience, and Prof. Alessandro Torcini and Dr. Stefano Luccioli of the Instituto dei Sistemi Complessi, under the auspices of TAU's Joint Italian-Israeli Laboratory on Integrative Network Neuroscience, offers a precise model of the organization of developing neuronal circuits.

In an earlier study of the hippocampi of newborn mice, Dr. Bonifazi discovered that a few "hub neurons" orchestrated the behavior of entire circuits. In the new study, the researchers harnessed cutting-edge technology to reproduce these findings in a computer-simulated model of neuronal circuits. "If we are able to identify the cellular type of hub neurons, we could try to reproduce them in vitro out of stem cells and transplant these into aged or damaged brain circuitries in order to recover functionality," said Dr. Bonifazi.

Flight dynamics and brain neurons

"Imagine that only a few airports in the world are responsible for all flight dynamics on the planet," said Dr. Bonifazi. "We found this to be true of hub neurons in their orchestration of circuits' synchronizations during development. We have reproduced these findings in a new computer model."

According to this model, one stimulated hub neuron impacts an entire circuit dynamic; similarly, just one muted neuron suppresses all coordinated activity of the circuit. "We are contributing to efforts to identify which neurons are more important to specific neuronal circuits," said Dr. Bonifazi. "If we can identify which cells play a major role in controlling circuit dynamics, we know how to communicate with an entire circuit, as in the case of the communication between the brain and prosthetic devices."

Conducting the orchestra of the brain

In the course of their research, the team found that the timely activation of cells is fundamental for the proper operation of hub neurons, which, in turn, orchestrate the entire network dynamic. In other words, a clique of hubs works in a kind of temporally-organized fashion, according to which "everyone has to be active at the right time," according to Dr. Bonifazi.

Coordinated activation impacts the entire network. Just by alternating the timing of the activity of one neuron, researchers were able to affect the operation of a small clique of neurons, and finally that of the entire network.

"Our study fits within framework of the 'complex network theory,' an emerging discipline that explores similar trends and properties among all kinds of networks — i.e., social networks, biological networks, even power plants," said Dr. Bonifazi. "This theoretical approach offers key insights into many systems, including the neuronal circuit network in our brains."

Parallel to their theoretical study, the researchers are conducting experiments on in vitro cultured systems to better identify electrophysiological and chemical properties of hub neurons. The joint Italy-Israel laboratory is also involved in a European project aimed at linking biological and artificial neuronal circuitries to restore lost brain functions.

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/weblog-medicine--health?=&storyid4704=2109&ncs4704=3

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>