Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-Neuron “Hub” Orchestrates Activity of an Entire Brain Circuit

30.09.2014

TAU maps precise triggers that activate and neutralize brain cell networks

The idea of mapping the brain is not new. Researchers have known for years that the key to treating, curing, and even preventing brain disorders such as Alzheimer's disease, epilepsy, and traumatic brain injury, is to understand how the brain records, processes, stores, and retrieves information.


New Tel Aviv University research published in PLOS Computational Biology makes a major contribution to efforts to navigate the brain. The study, by Prof. Eshel Ben-Jacob and Dr. Paolo Bonifazi of TAU's School of Physics and Astronomy and Sagol School of Neuroscience, and Prof. Alessandro Torcini and Dr. Stefano Luccioli of the Instituto dei Sistemi Complessi, under the auspices of TAU's Joint Italian-Israeli Laboratory on Integrative Network Neuroscience, offers a precise model of the organization of developing neuronal circuits.

In an earlier study of the hippocampi of newborn mice, Dr. Bonifazi discovered that a few "hub neurons" orchestrated the behavior of entire circuits. In the new study, the researchers harnessed cutting-edge technology to reproduce these findings in a computer-simulated model of neuronal circuits. "If we are able to identify the cellular type of hub neurons, we could try to reproduce them in vitro out of stem cells and transplant these into aged or damaged brain circuitries in order to recover functionality," said Dr. Bonifazi.

Flight dynamics and brain neurons

"Imagine that only a few airports in the world are responsible for all flight dynamics on the planet," said Dr. Bonifazi. "We found this to be true of hub neurons in their orchestration of circuits' synchronizations during development. We have reproduced these findings in a new computer model."

According to this model, one stimulated hub neuron impacts an entire circuit dynamic; similarly, just one muted neuron suppresses all coordinated activity of the circuit. "We are contributing to efforts to identify which neurons are more important to specific neuronal circuits," said Dr. Bonifazi. "If we can identify which cells play a major role in controlling circuit dynamics, we know how to communicate with an entire circuit, as in the case of the communication between the brain and prosthetic devices."

Conducting the orchestra of the brain

In the course of their research, the team found that the timely activation of cells is fundamental for the proper operation of hub neurons, which, in turn, orchestrate the entire network dynamic. In other words, a clique of hubs works in a kind of temporally-organized fashion, according to which "everyone has to be active at the right time," according to Dr. Bonifazi.

Coordinated activation impacts the entire network. Just by alternating the timing of the activity of one neuron, researchers were able to affect the operation of a small clique of neurons, and finally that of the entire network.

"Our study fits within framework of the 'complex network theory,' an emerging discipline that explores similar trends and properties among all kinds of networks — i.e., social networks, biological networks, even power plants," said Dr. Bonifazi. "This theoretical approach offers key insights into many systems, including the neuronal circuit network in our brains."

Parallel to their theoretical study, the researchers are conducting experiments on in vitro cultured systems to better identify electrophysiological and chemical properties of hub neurons. The joint Italy-Israel laboratory is also involved in a European project aimed at linking biological and artificial neuronal circuitries to restore lost brain functions.

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/weblog-medicine--health?=&storyid4704=2109&ncs4704=3

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>