Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single mutation gives virus new target

22.10.2013
A mutation as minute as swapping just one amino acid can completely change the target that a virus will bind to on a victim cell — potentially shifting what kind of cell and eventually what kind of organism a virus could infect.

In a new study published online in the journal PLoS Pathogens, an international team of scientists showed that by swapping a single amino acid they could change the sugar to which the human BK polyomavirus will binds on the surface of cells. The BK polyomavirus lost the ability to bind its usual target sugar and instead “preferred” the same sugar as its cousin SV40 polyomavirus, which is active in monkeys.


Single switch
The binding sites on the surface of the BK polyomavirus, called capsomers, each have five monomers. Scientists found that changing just one amino acid in these monomers caused the virus to bind to an entirely different receptor on targeted cells than before. Credit: Atwood lab/Brown University

The researchers were working in cell cultures with safe pseudoviruses, which cannot spread, so they did not show that the pseudovirus changed its infectivity from one species to another, but the finding provides a novel demonstration of how easily the binding target of a virus can change as its structure mutates and evolves.

Different cells have different bindings targets on their surfaces. A change in a virus’s binding target preference can be a key step in changing how that virus would affect different cells in a victim — or move on to a different species.

“I think it’s one of the first, if not the first, times that a receptor switch of this nature has been identified,” said Brown University virologist Walter Atwood, a corresponding author of the paper published Oct. 10, 2013. “There are dozens of viruses that use these kinds of sugars as receptors. What we’re showing is that it doesn’t take much to convert from using one type of sugar to using another type of sugar. It helps us to understand evolutionarily how these viruses may adapt to a new host.”

Brown postdoctoral researcher Stacy-ann Allen, one of two lead authors on the paper, said the team learned of the single amino acid difference by comparing high-resolution structural models of the two polyomaviruses bound to their favorite sugars. Collaborators, including co-lead author Ursula Neu and co-correspondng author Thilo Stehle at the University of Tübingen in Germany, produced those models using nuclear magnetic resonance spectroscopy.

“We had the structures and sequences of both BK and SV40, and they are relatively similar in their amino acid identity,” Allen said. “So when you see minute differences between them, you can target these differences to ask whether this difference allows for different infection in different hosts.”

Sure enough, when Allen made the change at amino acid site 68 in the BK polyomavirus, it switched from binding the “ganglioside” sugar GD3 to binding with GM1.

Allen and colleagues tested this not only in cells in the lab, but also by dropping the viruses onto microarrays of binding target sugars.

And for even more confirmation, the Brown scientists sent the mutated BK viruses back to Germany for more NMR resolution.

“The NMR spectrum of the BK and the SV40 were identical,” Atwood said, “They thought they had mixed up the samples. They were identical in terms of their ability to bind to GM1, the monkey receptor.”

It may take several steps beyond a switch of receptor preference for a virus to infect new cells in the body or entirely new species, but such a switch could be a key step in more viruses than just the polyomavirus family, the scientists said. Others seem to switch preferences fairly quickly.

“Prominent examples include different serotypes of adenoviruses, the canine and feline paroviruses, as well as avian, swine, and human influenza viruses,” they wrote in PLoS Pathogens.

In addition to Atwood, Allen, Neu, and Stihle, other authors on the paper are Barbel Blaum and Luisa Stroh of Tübingen; Yan Liu, Angelina Palma and Ten Fiezi of Imperial College London; Martin Frank of Biognos in Sweden; and Thomas Peters of the University of Lübeck in Germany.

The study’s funding came from the National Institutes of Health (grants: 5R01CA71878-13, P01-NS065719), the Wellcome Trust (WT093378MA, WT099197MA), and the UK Research Council (GRS/79268, EP/G037604/1).

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>