Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single host gene may hold key to treating both ebola and anthrax infections

24.08.2009
Research published by Army scientists indicates that a minor reduction in levels of one particular gene, known as CD45, can provide protection against two divergent microbes: the virus that causes Ebola hemorrhagic fever and the bacterium that causes anthrax. Taken together, the results suggest a common host restriction factor and a promising approach to drug development for treating two completely different infections.

Writing in the August 20 online issue of Cell Host and Microbe, scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) reported that mice expressing reduced levels of CD45 (between 11 and 77 percent) were protected against Ebola virus. In addition to an overall survival rate of 90 to 100 percent, these mice had reduced levels of virus load in the major organs, and had completely cleared the virus 10 days after challenge.

In contrast, mice that had naturally occurring levels of CD45—or none at all— failed to clear the virus and succumbed to infection within 7 to 8 days following challenge.

The protein encoded by CD45 is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, cell division, and the development of malignancies that can lead to tumor formation.

Scientists created various "knockdown" mice, which expressed reduced levels of CD45, to determine how those changes may alter the body's immune response to microbial pathogens such as Ebola virus. According to the authors, the "knockdown" mice retained greater control of gene expression and immune cell proliferation following Ebola virus infection. These factors contributed to enhanced viral clearance, increased protection against the virus, and a reduction in cell death.

The team's results suggest that host susceptibility to Ebola virus is dependent on the delicate balance of the body's natural immune system, which can be determined by the levels of a single regulator gene.

Ebola virus, which causes hemorrhagic fever with human case fatality rates up to 80 percent, is a global health concern and a potential biological threat. Currently there are no available vaccines or therapies. Scientists at USAMRIID study the Ebola virus to support development of medical products to prevent and treat infection.

The recently published work builds upon a related study that appeared in the Journal of Biological Chemistry in May of this year. That research showed that CD45 also plays a role in protection from Bacillus anthracis, the causative agent of anthrax. Specifically, the USAMRIID team demonstrated that in mice expressing 62 percent of the CD45 gene, about 70 percent were protected following exposure to anthrax.

Bacillus anthracis causes three types of disease—cutaneous, gastrointestinal, and inhalational—depending upon the route of exposure. A licensed vaccine is available, and is protective if administered before exposure. Inhalational anthrax is difficult to diagnose early, and despite antibiotic therapy, has a high fatality rate. In addition, because anthrax spores can remain in the body for extended periods, antibiotic treatment is typically recommended for 60 days or more following exposure.

"This report demonstrates the critical connection between basic research and the potential development of medical products," said COL John P. Skvorak, commander of USAMRIID. "Understanding pathogenesis of disease and host response is critical to the Department of Defense's investment in broad spectrum countermeasures."

The next step for investigators is to look at the mechanism of action to better understand how reduced expression of this gene regulates the pathogenesis of both diseases. That information could one day lead to the identification and discovery of additional promising compounds for treating Ebola and anthrax infections.

Both studies were supported by grants from the Defense Threat Reduction Agency, the National Institutes of Health, the National Cancer Institute, and the National Institute of Allergy and Infectious Diseases.

USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute conducts basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. While USAMRIID's primary mission is focused on the military, its research often has applications that benefit society as a whole. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit www.usamriid.army.mil.

References:

Rekha G. Panchal, Steven B. Bradfute, Brian D. Peyser, Kelly L. Warfield, Gordon Ruthel, Douglas Lane, Tara A. Kenny, Arthur O. Anderson, William C. Raschke and Sina Bavari. "Reduced Levels of Protein Tyrosine Phosphatase CD45 Protect Mice from the Lethal Effects of Ebola Virus Infection," Cell Host and Microbe (August 2009).

Rekha G. Panchal, Ricky L. Ulrich, Steven B. Bradfute, Douglas Lane, Gordon Ruthel, Tara A. Kenny, Patrick L. Iversen, Arthur O. Anderson, Rick Gussio, William C. Raschke, and Sina Bavari. "Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis," Journal of Biological Chemistry (May 2009).

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>