Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single host gene may hold key to treating both ebola and anthrax infections

Research published by Army scientists indicates that a minor reduction in levels of one particular gene, known as CD45, can provide protection against two divergent microbes: the virus that causes Ebola hemorrhagic fever and the bacterium that causes anthrax. Taken together, the results suggest a common host restriction factor and a promising approach to drug development for treating two completely different infections.

Writing in the August 20 online issue of Cell Host and Microbe, scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) reported that mice expressing reduced levels of CD45 (between 11 and 77 percent) were protected against Ebola virus. In addition to an overall survival rate of 90 to 100 percent, these mice had reduced levels of virus load in the major organs, and had completely cleared the virus 10 days after challenge.

In contrast, mice that had naturally occurring levels of CD45—or none at all— failed to clear the virus and succumbed to infection within 7 to 8 days following challenge.

The protein encoded by CD45 is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, cell division, and the development of malignancies that can lead to tumor formation.

Scientists created various "knockdown" mice, which expressed reduced levels of CD45, to determine how those changes may alter the body's immune response to microbial pathogens such as Ebola virus. According to the authors, the "knockdown" mice retained greater control of gene expression and immune cell proliferation following Ebola virus infection. These factors contributed to enhanced viral clearance, increased protection against the virus, and a reduction in cell death.

The team's results suggest that host susceptibility to Ebola virus is dependent on the delicate balance of the body's natural immune system, which can be determined by the levels of a single regulator gene.

Ebola virus, which causes hemorrhagic fever with human case fatality rates up to 80 percent, is a global health concern and a potential biological threat. Currently there are no available vaccines or therapies. Scientists at USAMRIID study the Ebola virus to support development of medical products to prevent and treat infection.

The recently published work builds upon a related study that appeared in the Journal of Biological Chemistry in May of this year. That research showed that CD45 also plays a role in protection from Bacillus anthracis, the causative agent of anthrax. Specifically, the USAMRIID team demonstrated that in mice expressing 62 percent of the CD45 gene, about 70 percent were protected following exposure to anthrax.

Bacillus anthracis causes three types of disease—cutaneous, gastrointestinal, and inhalational—depending upon the route of exposure. A licensed vaccine is available, and is protective if administered before exposure. Inhalational anthrax is difficult to diagnose early, and despite antibiotic therapy, has a high fatality rate. In addition, because anthrax spores can remain in the body for extended periods, antibiotic treatment is typically recommended for 60 days or more following exposure.

"This report demonstrates the critical connection between basic research and the potential development of medical products," said COL John P. Skvorak, commander of USAMRIID. "Understanding pathogenesis of disease and host response is critical to the Department of Defense's investment in broad spectrum countermeasures."

The next step for investigators is to look at the mechanism of action to better understand how reduced expression of this gene regulates the pathogenesis of both diseases. That information could one day lead to the identification and discovery of additional promising compounds for treating Ebola and anthrax infections.

Both studies were supported by grants from the Defense Threat Reduction Agency, the National Institutes of Health, the National Cancer Institute, and the National Institute of Allergy and Infectious Diseases.

USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute conducts basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. While USAMRIID's primary mission is focused on the military, its research often has applications that benefit society as a whole. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit


Rekha G. Panchal, Steven B. Bradfute, Brian D. Peyser, Kelly L. Warfield, Gordon Ruthel, Douglas Lane, Tara A. Kenny, Arthur O. Anderson, William C. Raschke and Sina Bavari. "Reduced Levels of Protein Tyrosine Phosphatase CD45 Protect Mice from the Lethal Effects of Ebola Virus Infection," Cell Host and Microbe (August 2009).

Rekha G. Panchal, Ricky L. Ulrich, Steven B. Bradfute, Douglas Lane, Gordon Ruthel, Tara A. Kenny, Patrick L. Iversen, Arthur O. Anderson, Rick Gussio, William C. Raschke, and Sina Bavari. "Reduced Expression of CD45 Protein-tyrosine Phosphatase Provides Protection against Anthrax Pathogenesis," Journal of Biological Chemistry (May 2009).

Caree Vander Linden | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>