Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First single gene mutation shown to result in type 1 diabetes

06.03.2013
Results from a JDRF-funded study out of Switzerland were published today in Cell Metabolism

A JDRF-funded study out of Switzerland has shown that a single gene called SIRT1 may be involved in the development of type 1 diabetes (T1D) and other autoimmune diseases.

The study, "Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes," was published today in Cell Metabolism and represents the first demonstration of a monogenetic defect leading to the onset of T1D.

The research began when Marc Donath, M.D., endocrinologist and researcher at the University Hospital Basel in Switzerland, discovered an interesting pattern of autoimmune disease within the family of one of his patients, a 26-year-old male who had recently been diagnosed with T1D. The patient showed an uncommonly strong family history of T1D; his sister, father, and paternal cousin had also been diagnosed earlier in their lives. Additionally, another family member had developed ulcerative colitis, also an autoimmune disease.

"This pattern of inheritance was indicative of dominant genetic mutation, and we therefore decided to attempt to identify it," Dr. Donath said.

Four years of analysis using three different genotyping and sequencing techniques pointed to a mutation on the SIRT1 gene as the common indicator of autoimmune disease within the family. The SIRT1 gene plays a role in regulating metabolism and protecting against age-related disease. To gain more understanding of how this genetic change in SIRT1 leads to T1D, Dr. Donath and his team performed additional studies with animal models of T1D.

When the mutant SIRT1 gene found in the families was expressed in beta cells, those beta cells generated more mediators that were destructive to them. Furthermore, knocking out the normal SIRT1 gene in mice resulted in their becoming more susceptible to diabetes with greatly increased islet destruction. Dr. Donath speculates that the beta cell impairment and death due to the SIRT1 mutation subsequently activates the immune system toward T1D.

"The identification of a gene leading to type 1 diabetes could allow us to understand the mechanism responsible for the disease and may open up new treatment options," Dr. Donath explained.

Patricia Kilian, Ph.D., director of the Beta Cell Regeneration Program at JDRF, concurred, and said that the development is exciting for many reasons: "While the change in the genetic makeup within this family with type 1 diabetes is rare, the discovery of the role of the SIRT1 pathway in affecting beta cells could help scientists find ways to enhance beta cell survival and function in more common forms of the disease. This study also reinforces increasing evidence that abnormal beta cell function has a role in the development of type 1 diabetes, and that blocking or reversing early stages of beta cell dysfunction may help prevent or significantly delay the disease's onset. Drug companies are already in the process of developing SIRT1 activators, which could eventually speed our ability to translate these new research findings into meaningful therapies for patients."

JDRF is continuing to fund research by Dr. Donath that builds off of these latest findings.

About JDRF

JDRF is the leading global organization focused on type 1 diabetes (T1D) research. Driven by passionate, grassroots volunteers connected to children, adolescents, and adults with this disease, JDRF is now the largest charitable supporter of T1D research. The goal of JDRF research is to improve the lives of all people affected by T1D by accelerating progress on the most promising opportunities for curing, better treating, and preventing T1D. JDRF collaborates with a wide spectrum of partners who share this goal.

Since its founding in 1970, JDRF has awarded more than $1.7 billion to diabetes research. Past JDRF efforts have helped to significantly advance the care of people with this disease, and have expanded the critical scientific understanding of T1D. JDRF will not rest until T1D is fully conquered. More than 80 percent of JDRF's expenditures directly support research and research-related education.

Tara Wilcox-Ghanoonparvar | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>