Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene mutation responsible for 'catastrophic epilepsy'

08.07.2009
Catastrophic epilepsy – characterized by severe muscle spasms, persistent seizures, mental retardation and sometimes autism – results from a mutation in a single gene, said Baylor College of Medicine (www.bcm.edu) researchers in a report that appears in the current issue of the Journal of Neuroscience.

The BCM department of neurology team replicated the defect in mice, developing a mouse model of the disease that could help researchers figure out effective treatments for and new approaches to curing the disease, said Dr. Jeffrey Noebels (http://www.bcm.edu/neurology/faculty/noebels.html), professor of neurology, neuroscience and molecular and human genetics at BCM and director of the Blue Bird Circle Developmental Neurogenetics Laboratory at BCM, where the research was performed.

"While many genes underlying various forms of childhood epilepsy have been identified in the past decade, most cause a disorder of 'pure' seizures," said Noebels. Why some children have a more complicated set of disorders beginning with major motor spasms in infancy followed by cognitive dysfunction and developmental disorders such as autism remained a mystery until the discovery by the BCM team that a mutation in only a single gene explains all four features of catastrophic epilepsy.

A gene known as Aristaless-related homeobox or ARX has a specific mutation called a triplet repeat, which means that a particular genetic (in this case, GCG) is repeated many times in the gene. When the researchers duplicated this particular mutation in specially bred mice, the animals had motor spasm similar to those seen in human infants. Recordings of their brain waves showed that they had several kinds of seizes, included absence epilepsy and general convulsion. They also had learning disabilities and were four times more likely to avoid contact with other mice than their normal counterparts. This behavior is similar to that seen in children with autism or similar disorders in the same spectrum.

"The new model is an essential tool to find a cure for the disorder," said Noebels.

"Mutation of the ARX gene was previously known to affect interneurons, a class of cells that inhibit electrical activity in the brain," said Dr. Maureen Price (http://www.bcm.edu/neurology/faculty/price.html), the report's lead author and an instructor in neurology at BCM.

When researchers evaluated the brains of the adult mice with the mutated gene, they found that a special class of interneurons had never developed in specific brain regions.

"Further study will allow use to pinpoint which brain region is liked to the autistic-like behavior," said Price.

Two members of the research team – Dr. James Frost, professor of neurology at BCM (http://www.bcm.edu/neurology/faculty/frost.html), who developed the concept of the special mouse, and Dr. Richard Hrachovy (http://www.bcm.edu/neurology/faculty/hrachovy.cfm), also a professor of neurology at BCM – are pioneers in the study of human infantile spasms.

"At present there is no proven cure to offer children with this specific epilepsy", said Noebels. "We now have new clues into the mechanism and have already initiated studies with a new class of drugs not previously explored for this disorder." The new drug testing is supported by the private foundation People Against Childhood Epilepsy.

Others who took part in this work include Jong W. Yoo, Daniel L. Burgess and Fang Deng, all of BCM.

Funding for this work came from the Peter Kellaway Memorial Research Fund, the Blue Bird Circle Foundation, the National Institutes of Health Intellectual and Developmental Disabilities Research Center, and the PACE Foundation.

When the embargo lifts, this report will be available at http://www.jneurosci.org/

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>