Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene mutation responsible for 'catastrophic epilepsy'

08.07.2009
Catastrophic epilepsy – characterized by severe muscle spasms, persistent seizures, mental retardation and sometimes autism – results from a mutation in a single gene, said Baylor College of Medicine (www.bcm.edu) researchers in a report that appears in the current issue of the Journal of Neuroscience.

The BCM department of neurology team replicated the defect in mice, developing a mouse model of the disease that could help researchers figure out effective treatments for and new approaches to curing the disease, said Dr. Jeffrey Noebels (http://www.bcm.edu/neurology/faculty/noebels.html), professor of neurology, neuroscience and molecular and human genetics at BCM and director of the Blue Bird Circle Developmental Neurogenetics Laboratory at BCM, where the research was performed.

"While many genes underlying various forms of childhood epilepsy have been identified in the past decade, most cause a disorder of 'pure' seizures," said Noebels. Why some children have a more complicated set of disorders beginning with major motor spasms in infancy followed by cognitive dysfunction and developmental disorders such as autism remained a mystery until the discovery by the BCM team that a mutation in only a single gene explains all four features of catastrophic epilepsy.

A gene known as Aristaless-related homeobox or ARX has a specific mutation called a triplet repeat, which means that a particular genetic (in this case, GCG) is repeated many times in the gene. When the researchers duplicated this particular mutation in specially bred mice, the animals had motor spasm similar to those seen in human infants. Recordings of their brain waves showed that they had several kinds of seizes, included absence epilepsy and general convulsion. They also had learning disabilities and were four times more likely to avoid contact with other mice than their normal counterparts. This behavior is similar to that seen in children with autism or similar disorders in the same spectrum.

"The new model is an essential tool to find a cure for the disorder," said Noebels.

"Mutation of the ARX gene was previously known to affect interneurons, a class of cells that inhibit electrical activity in the brain," said Dr. Maureen Price (http://www.bcm.edu/neurology/faculty/price.html), the report's lead author and an instructor in neurology at BCM.

When researchers evaluated the brains of the adult mice with the mutated gene, they found that a special class of interneurons had never developed in specific brain regions.

"Further study will allow use to pinpoint which brain region is liked to the autistic-like behavior," said Price.

Two members of the research team – Dr. James Frost, professor of neurology at BCM (http://www.bcm.edu/neurology/faculty/frost.html), who developed the concept of the special mouse, and Dr. Richard Hrachovy (http://www.bcm.edu/neurology/faculty/hrachovy.cfm), also a professor of neurology at BCM – are pioneers in the study of human infantile spasms.

"At present there is no proven cure to offer children with this specific epilepsy", said Noebels. "We now have new clues into the mechanism and have already initiated studies with a new class of drugs not previously explored for this disorder." The new drug testing is supported by the private foundation People Against Childhood Epilepsy.

Others who took part in this work include Jong W. Yoo, Daniel L. Burgess and Fang Deng, all of BCM.

Funding for this work came from the Peter Kellaway Memorial Research Fund, the Blue Bird Circle Foundation, the National Institutes of Health Intellectual and Developmental Disabilities Research Center, and the PACE Foundation.

When the embargo lifts, this report will be available at http://www.jneurosci.org/

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>