Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single enzyme is necessary for development of diabetes

15.08.2014

An enzyme called 12-LO promotes the obesity-induced oxidative stress in the pancreatic cells that leads to pre-diabetes, and diabetes.

12-LO's enzymatic action is the last step in the production of certain small molecules that harm the cell, according to a team from Indiana University School of Medicine, Indianapolis. The findings will enable the development of drugs that can interfere with this enzyme, preventing or even reversing diabetes. The research is published ahead of print in the journal Molecular and Cellular Biology.

Nearly 40 percent of Americans—more than 120 million people—have diabetes or pre-diabetes. Diabetes results when the pancreas fails to produce sufficient insulin to remove sugar from the blood.

"We surmised that when individuals eat high fat foods and become overweight, the beta cells of their pancreases fail to produce sufficient insulin," says principal investigator Raghavendra Mirmira. In earlier studies, these researchers and their collaborators at Eastern Virginia Medical School showed that 12-LO (which stands for 12-lipoxygenase) is present in these cells only in people who become overweight.

The harmful small molecules resulting from 12-LO's enzymatic action are known as HETEs, short for hydroxyeicosatetraenoic acid. HETEs harm the mitochondria, which then fail to produce sufficient energy to enable the pancreatic cells to manufacture the necessary quantities of insulin.

For the study, the investigators genetically engineered mice that lacked the gene for 12-LO exclusively in their pancreas cells. Mice were either fed a low-fat or high-fat diet.

Both the control mice and the knockout mice on the high fat diet developed obesity and insulin resistance. The investigators also examined the pancreatic beta cells of both knockout and control mice, using both microscopic studies and molecular analysis. Those from the knockout mice were intact and healthy, while those from the control mice showed oxidative damage, demonstrating that 12-LO and the resulting HETEs caused the beta cell failure.

Mirmira notes that fatty diet used in the study was the Western Diet, which comprises mostly saturated—"bad"—fats. Based partly on a recent study of related metabolic pathways, he says that the unsaturated and mono-unsaturated fats—which comprise most fats in the healthy, relatively high fat Mediterranean diet—are unlikely to have the same effects.

"Our research is the first to show that 12-LO in the beta cell is the culprit in the development of pre-diabetes, following high fat diets," says Mirmira. "Our work also lends important credence to the notion that the beta cell is the primary defective cell in virtually all forms of diabetes and pre-diabetes."

###

The manuscript can be found online at http://bit.ly/asmtip0814b. The final version of the article is scheduled for the October 2014 issue of Molecular and Cellular Biology.

Molecular and Cellular Biology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!
Further information:
http://www.asmusa.org

Further reports about: 12-LO ASM Biology Cellular Molecular beta enzymatic enzyme investigators pancreas pancreatic pre-diabetes

More articles from Life Sciences:

nachricht Why some neurons “outsource” their cell body
21.04.2015 | Nationales Bernstein Netzwerk Computational Neuroscience

nachricht Bubbles dilemma solved after more than twenty years
21.04.2015 | University of Twente

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

Im Focus: Advances in Molecular Electronics: Lights On – Molecule On

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Konstanz are working on storing and processing information on the level of single molecules to create the smallest possible components that will combine autonomously to form a circuit. As recently reported in the academic journal Advanced Science, the researchers can switch on the current flow through a single molecule for the first time with the help of light.

Dr. Artur Erbe, physicist at the HZDR, is convinced that in the future molecular electronics will open the door for novel and increasingly smaller – while also...

Im Focus: Pruning of Blood Vessels: Cells Can Fuse With Themselves

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. Markus Affolter from the Biozentrum of the University of Basel. The findings of this study have been published in the journal “PLoS Biology”.

The vascular system is the supply network of the human organism and delivers oxygen and nutrients to the last corners of the body. So far, research on the...

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Better battery imaging paves way for renewable energy future

21.04.2015 | Materials Sciences

Extending climate predictability beyond El Niño

21.04.2015 | Earth Sciences

Risk Perception: Social Exchange Can Amplify Subjective Fears

21.04.2015 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>