Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Crystals as Reaction Vessels

02.09.2008
In a crystal, but like in solution: chemical reactions in the pores of single crystals

Japanese researchers from the University of Tokyo have made a complex that crystallizes as a porous solid.

Common reagents, even bulky ones, can easily diffuse into these pores and are sufficiently mobile to react with embedded substrates. As they report in the journal Angewandte Chemie, the pores act as a sort of crystalline molecular test tube.

The reaction products can then be directly examined by X-ray crystallographic methods.

Only single crystals can be examined by X-ray crystallography. The crystal’s diffraction of X-rays can be used to determine its structure. Liquids are not so easy to analyze. In solid-state reactions, this technique is limited to cases in which the structural changes are very small. Bulky reactants cannot even get into an ordinary tightly packed crystal, and crystals often decompose in the course of the reaction.

A team led by Makoto Fujita has developed a complex of zinc ions and aromatic ring systems that crystallizes into a robust network with large pores. The compound is constructed so that reactive groups of atoms, such as amino groups, protrude into the pores. Dipping the crystals into a solution containing common reactants brings these into contact with the embedded reaction partners. Even bulky molecules can get into the large pores. The researchers were thus able to react the amino groups with acetic anhydride or aniline. The reactivity of the reagents used and the course of the reaction are no different than if the reactants encountered each other freely in solution. The crystal changed color little by little, but remained intact in crystalline form despite the reaction.

Because the final product of the reaction is still in the form of a single crystal, the course of the reaction can be followed by X-ray crystallographic methods. Labile reaction products and intermediates can thus be produced and detected in situ. The chemical reactions within the pores can also be used to modify the walls of the pores as needed. For example, they can be equipped with free acid groups.

Author: Makoto Fujita, University of Tokyo (Japan), http://fujitalab.t.u-tokyo.ac.jp/members_e/mfujita/

Title: Single-Crystalline Molecular Flasks: Chemical Transformation with Bulky Reagents in the Pores of Porous Coordination Networks

Angewandte Chemie International Edition, doi: 10.1002/anie.200802545

Makoto Fujita | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://fujitalab.t.u-tokyo.ac.jp/members_e/mfujita/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>