Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single Crystals as Reaction Vessels

02.09.2008
In a crystal, but like in solution: chemical reactions in the pores of single crystals

Japanese researchers from the University of Tokyo have made a complex that crystallizes as a porous solid.

Common reagents, even bulky ones, can easily diffuse into these pores and are sufficiently mobile to react with embedded substrates. As they report in the journal Angewandte Chemie, the pores act as a sort of crystalline molecular test tube.

The reaction products can then be directly examined by X-ray crystallographic methods.

Only single crystals can be examined by X-ray crystallography. The crystal’s diffraction of X-rays can be used to determine its structure. Liquids are not so easy to analyze. In solid-state reactions, this technique is limited to cases in which the structural changes are very small. Bulky reactants cannot even get into an ordinary tightly packed crystal, and crystals often decompose in the course of the reaction.

A team led by Makoto Fujita has developed a complex of zinc ions and aromatic ring systems that crystallizes into a robust network with large pores. The compound is constructed so that reactive groups of atoms, such as amino groups, protrude into the pores. Dipping the crystals into a solution containing common reactants brings these into contact with the embedded reaction partners. Even bulky molecules can get into the large pores. The researchers were thus able to react the amino groups with acetic anhydride or aniline. The reactivity of the reagents used and the course of the reaction are no different than if the reactants encountered each other freely in solution. The crystal changed color little by little, but remained intact in crystalline form despite the reaction.

Because the final product of the reaction is still in the form of a single crystal, the course of the reaction can be followed by X-ray crystallographic methods. Labile reaction products and intermediates can thus be produced and detected in situ. The chemical reactions within the pores can also be used to modify the walls of the pores as needed. For example, they can be equipped with free acid groups.

Author: Makoto Fujita, University of Tokyo (Japan), http://fujitalab.t.u-tokyo.ac.jp/members_e/mfujita/

Title: Single-Crystalline Molecular Flasks: Chemical Transformation with Bulky Reagents in the Pores of Porous Coordination Networks

Angewandte Chemie International Edition, doi: 10.1002/anie.200802545

Makoto Fujita | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://fujitalab.t.u-tokyo.ac.jp/members_e/mfujita/

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>