Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Single Crystals as Reaction Vessels

In a crystal, but like in solution: chemical reactions in the pores of single crystals

Japanese researchers from the University of Tokyo have made a complex that crystallizes as a porous solid.

Common reagents, even bulky ones, can easily diffuse into these pores and are sufficiently mobile to react with embedded substrates. As they report in the journal Angewandte Chemie, the pores act as a sort of crystalline molecular test tube.

The reaction products can then be directly examined by X-ray crystallographic methods.

Only single crystals can be examined by X-ray crystallography. The crystal’s diffraction of X-rays can be used to determine its structure. Liquids are not so easy to analyze. In solid-state reactions, this technique is limited to cases in which the structural changes are very small. Bulky reactants cannot even get into an ordinary tightly packed crystal, and crystals often decompose in the course of the reaction.

A team led by Makoto Fujita has developed a complex of zinc ions and aromatic ring systems that crystallizes into a robust network with large pores. The compound is constructed so that reactive groups of atoms, such as amino groups, protrude into the pores. Dipping the crystals into a solution containing common reactants brings these into contact with the embedded reaction partners. Even bulky molecules can get into the large pores. The researchers were thus able to react the amino groups with acetic anhydride or aniline. The reactivity of the reagents used and the course of the reaction are no different than if the reactants encountered each other freely in solution. The crystal changed color little by little, but remained intact in crystalline form despite the reaction.

Because the final product of the reaction is still in the form of a single crystal, the course of the reaction can be followed by X-ray crystallographic methods. Labile reaction products and intermediates can thus be produced and detected in situ. The chemical reactions within the pores can also be used to modify the walls of the pores as needed. For example, they can be equipped with free acid groups.

Author: Makoto Fujita, University of Tokyo (Japan),

Title: Single-Crystalline Molecular Flasks: Chemical Transformation with Bulky Reagents in the Pores of Porous Coordination Networks

Angewandte Chemie International Edition, doi: 10.1002/anie.200802545

Makoto Fujita | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>