Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals

28.11.2014

New catalysts designed and investigated by Tufts University School of Engineering researchers and collaborators from other university and national laboratories have the potential to greatly reduce processing costs in future fuels, such as hydrogen.

The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials. They demonstrate comparable activity and stability with catalysts comprising precious metal nanoparticles on rare- earth and other reducible oxide supports when used in producing highly purified hydrogen.

The work, which appears in the November 27, 2014, edition of Science Express, points to new avenues for producing single-site supported gold catalysts that could produce high-grade hydrogen for cleaner energy use in fuel-cell powered devices, including vehicles.

"In the face of precious metals scarcity and exorbitant fuel-processing costs, these systems are promising in the search for sustainable global energy solutions," says senior author Maria Flytzani-Stephanopoulos, the Robert and Marcy Haber Endowed Professor in Energy Sustainability and professor in the Department of Chemical and Biological Engineering at Tufts.

Flytzani-Stephanopoulos's research group has been active in designing catalysts requiring a lower amount of precious metals to generate high-grade hydrogen for use in fuel cells. The water-gas shift reaction, in which carbon monoxide is removed from the fuel gas stream by reacting with water to produce carbon dioxide and hydrogen, is a key step in the process. Catalysts, such as metal oxide supported precious metals like platinum and gold, are used to lower the reaction temperature and increase the production of hydrogen.

The Tufts group was the first to demonstrate that atomically dispersed gold or platinum on supports, such as cerium oxide, are the active sites for the water-gas shift reaction. (doi:10.1126/science.1192449). Metal nanoparticles are "spectator species" for this reaction.

Flytzani-Stephanopoulos says the new research suggests single precious metal atoms stabilized with alkali ions may be the only important catalyst sites for other catalytic reactions. "If the other particles are truly 'spectator species', they are therefore unnecessary. Future catalyst production should then focus on avoiding particle formation altogether and instead be prepared solely with atomic dispersion on various supports," says Flytzani-Stephanopoulos.

The just published research describes how single gold atoms dispersed on non-reactive supports based on silica materials can be stabilized with alkali ions. As long as the gold atoms, or cations, are stabilized in a single-site form configuration, irrespective of the type of support, the precious metal will be stable and operate for many hours at a range of practical temperatures.

"This novel atomic-scale catalyst configuration achieves the maximum efficiency and utilization of the gold," says Flytzani-Stephanopoulos, who directs the Tufts Nano Catalysis and Energy Laboratory. "Our work showed that these single-site gold cations were active for the low-temperature water-gas shift reaction and stable in operation at temperatures as high as 200°C."

"Armed with this new understanding, practitioners will be able to design catalysts using just the necessary amount of the precious metals like gold and platinum, dramatically cutting down the catalyst cost in fuels and chemicals production processes," she adds.

Paper co-authors Professor Manos Mavrikakis at the University of Wisconsin-Madison and Assistant Professor Ye Xu at Louisiana State University used theoretical calculations to predict the stability and thermochemical properties of the single-site configuration. Researchers Larry Allard at Oak Ridge National Laboratory and Sungsik Lee at Argonne National Laboratory used atomic resolution electron microscopy and x-ray absorption spectroscopies, respectively, to demonstrate the existence and stability of the single-site gold species. Co-author Jun Huang, a lecturer at the University of Sydney, synthesized and characterized the silica materials used as supports. Several graduate students were involved in all aspects of the research both at Tufts and the University of Wisconsin-Madison.

The paper appears in the November 27, 2014, edition of Science Express (doi:10.1126/science.1260526). This research is primarily supported by the U.S. Department of Energy under grant # DE-FG02-05ER15730.

Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>