Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals

28.11.2014

New catalysts designed and investigated by Tufts University School of Engineering researchers and collaborators from other university and national laboratories have the potential to greatly reduce processing costs in future fuels, such as hydrogen.

The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials. They demonstrate comparable activity and stability with catalysts comprising precious metal nanoparticles on rare- earth and other reducible oxide supports when used in producing highly purified hydrogen.

The work, which appears in the November 27, 2014, edition of Science Express, points to new avenues for producing single-site supported gold catalysts that could produce high-grade hydrogen for cleaner energy use in fuel-cell powered devices, including vehicles.

"In the face of precious metals scarcity and exorbitant fuel-processing costs, these systems are promising in the search for sustainable global energy solutions," says senior author Maria Flytzani-Stephanopoulos, the Robert and Marcy Haber Endowed Professor in Energy Sustainability and professor in the Department of Chemical and Biological Engineering at Tufts.

Flytzani-Stephanopoulos's research group has been active in designing catalysts requiring a lower amount of precious metals to generate high-grade hydrogen for use in fuel cells. The water-gas shift reaction, in which carbon monoxide is removed from the fuel gas stream by reacting with water to produce carbon dioxide and hydrogen, is a key step in the process. Catalysts, such as metal oxide supported precious metals like platinum and gold, are used to lower the reaction temperature and increase the production of hydrogen.

The Tufts group was the first to demonstrate that atomically dispersed gold or platinum on supports, such as cerium oxide, are the active sites for the water-gas shift reaction. (doi:10.1126/science.1192449). Metal nanoparticles are "spectator species" for this reaction.

Flytzani-Stephanopoulos says the new research suggests single precious metal atoms stabilized with alkali ions may be the only important catalyst sites for other catalytic reactions. "If the other particles are truly 'spectator species', they are therefore unnecessary. Future catalyst production should then focus on avoiding particle formation altogether and instead be prepared solely with atomic dispersion on various supports," says Flytzani-Stephanopoulos.

The just published research describes how single gold atoms dispersed on non-reactive supports based on silica materials can be stabilized with alkali ions. As long as the gold atoms, or cations, are stabilized in a single-site form configuration, irrespective of the type of support, the precious metal will be stable and operate for many hours at a range of practical temperatures.

"This novel atomic-scale catalyst configuration achieves the maximum efficiency and utilization of the gold," says Flytzani-Stephanopoulos, who directs the Tufts Nano Catalysis and Energy Laboratory. "Our work showed that these single-site gold cations were active for the low-temperature water-gas shift reaction and stable in operation at temperatures as high as 200°C."

"Armed with this new understanding, practitioners will be able to design catalysts using just the necessary amount of the precious metals like gold and platinum, dramatically cutting down the catalyst cost in fuels and chemicals production processes," she adds.

Paper co-authors Professor Manos Mavrikakis at the University of Wisconsin-Madison and Assistant Professor Ye Xu at Louisiana State University used theoretical calculations to predict the stability and thermochemical properties of the single-site configuration. Researchers Larry Allard at Oak Ridge National Laboratory and Sungsik Lee at Argonne National Laboratory used atomic resolution electron microscopy and x-ray absorption spectroscopies, respectively, to demonstrate the existence and stability of the single-site gold species. Co-author Jun Huang, a lecturer at the University of Sydney, synthesized and characterized the silica materials used as supports. Several graduate students were involved in all aspects of the research both at Tufts and the University of Wisconsin-Madison.

The paper appears in the November 27, 2014, edition of Science Express (doi:10.1126/science.1260526). This research is primarily supported by the U.S. Department of Energy under grant # DE-FG02-05ER15730.

Located on Tufts' Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in a unique environment that blends the intellectual and technological resources of a world-class research university with the strengths of a top-ranked liberal arts college. Close partnerships with Tufts' excellent undergraduate, graduate and professional schools, coupled with a long tradition of collaboration, provide a strong platform for interdisciplinary education and scholarship. The School of Engineering's mission is to educate engineers committed to the innovative and ethical application of science and technology in addressing the most pressing societal needs, to develop and nurture twenty-first century leadership qualities in its students, faculty, and alumni, and to create and disseminate transformational new knowledge and technologies that further the well-being and sustainability of society in such cross-cutting areas as human health, environmental sustainability, alternative energy, and the human-technology interface.

Kim Thurler | EurekAlert!
Further information:
http://www.tufts.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>