Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore scientists discover new drug targets for aggressive breast cancer

29.07.2013
Scientists at A*STAR’s Genome Institute of Singapore (GIS) led in a study that has identified genes that are potential targets for therapeutic drugs against aggressive breast cancer. These findings were reported in the July 2013 issue of PNAS.

Out of the 1.5 million women diagnosed with breast cancer in the world annually, nearly one in seven of these is classified as triple negative. Patients with triple-negative breast cancer (TNBC) have tumours that are missing three important proteins that are found in other types of breast cancer. The absence of these three proteins make TNBC patients succumb to a higher rate of relapse following treatment and have lower overall survival rates. There is currently no effective therapy for TNBC.

Using integrated genomic approaches, GIS scientists led by Dr. Qiang Yu, in collaboration with local and international institutions, set out to search for targets that can be affected by drugs. The scientists discovered that a protein tyrosine phosphatase[1], called UBASH3B, is overexpressed in one third of TNBC patients. UBASH3B controls the activity of an important breast cancer gene. The researchers found that deleting this gene expression markedly inhibits TNBC cell invasive growth and lung metastasis in a mouse model. They also showed that patients with TNBC tumours that have high levels of UBASH3B tend to be more likely to have early recurrence and metastasis.

Lead author Dr Qiang Yu said, “The identification of target genes is always the most crucial first step towards treating a disease. It is heartening to know that UBASH3B is an important element of the pro-invasive gene network and targeting UBASH3B not only inhibits TNBC invasive growth, but also significantly reduces metastasis.”

Tan Tock Seng Hospital consultant surgeon Dr Tan Ern Yu, a collaborator and co-author of the study said, “Some TNBC patients relapse soon after standard treatment while others remain free of disease for a long time. Being able to predict which patients are more likely to relapse is important since these patients may benefit from more aggressive treatments. But currently, doctors are unable to reliably do so. Further validation will show whether UBASH3B can be developed into a means of identifying these high-risk patients as well as a new form of treatment.”

Dr Dave Hoon, Director, Department Molecular Oncology at the John Wayne Cancer Institute, USA, and co-author said, “Recent large-scale genomic analysis of breast cancer show that triple negative breast cancer are highly heterogeneous and patients tumors can have different molecular profiles. Unlike more common breast cancers that often express oestrogen, progesterone or HER2 can be targeted by specific agents such as hormone therapy or Herceptin. TNBC is the most difficult breast cancer to treat. The finding can help us develop new approaches for targeted therapy for this highly aggressive breast cancer.”

UBASH3B is expressed in high levels not only in American TNBC patients, but also in local Asian patients. This important information shows that the clinical significance of this finding is not limited to one specific ethnic group.

Notes to the Editor:

Research publication

The research findings described in the press release was published in the July 2nd, 2013 issue of PNAS (Proceedings of the National Academy of Sciences, USA) under the title “Protein tyrosine phosphatase UBASH3B is overexpressed in triple-negative breast cancer and promotes invasion and metastasis”.

Authors:

Shuet Theng Leea,1, Min Fenga,1, Yong Weib,1, Zhimei Lia, Yuanyuan Qiaoa, Peiyong Guanc, Xia Jianga, Chew Hooi Wonga, Kelly Huynhd, Jinhua Wangd, Juntao Lic, K. Murthy Karuturic, Ern Yu Tane, Dave S. B. Hoond, Yibin Kangb, and Qiang Yua,f,g*

a. Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672;

b. Department of Molecular Biology, Princeton University, Princeton, NJ 08544;

c. Information and Mathematical Science, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672;

d. Department Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA 90404;

e. Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433;

f. Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and

g. Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore

1. These authors contributed equally to this study.

* Correspondance: Qiang Yu, yuq@gis.a-star.edu.sg. Tel: (65)6808-8127

Contact

Winnie Lim

Genome Institute of Singapore

Office of Corporate Communications

Tel: (65) 6808 8013

Email: limcp2@gis.a-star.edu.sg

About the Genome Institute of Singapore (GIS)

The Genome Institute of Singapore (GIS) is an institute of the Agency for Science, Technology and Research (A*STAR). It has a global vision that seeks to use genomic sciences to improve public health and public prosperity. Established in 2001 as a centre for genomic discovery, the GIS will pursue the integration of technology, genetics and biology towards the goal of individualized medicine.

The key research areas at the GIS include Systems Biology, Stem Cell & Developmental Biology, Cancer Biology & Pharmacology, Human Genetics, Infectious Diseases, Genomic Technologies, and Computational & Mathematical Biology. The genomics infrastructure at the GIS is utilized to train new scientific talent, to function as a bridge for academic and industrial research, and to explore scientific questions of high impact.

www.gis.a-star.edu.sg

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy.

In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry.

A*STAR oversees 20 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories.

[1] Protein tyrosine phosphatases, are a group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on proteins. These enzymes are key regulatory components in signal transduction pathways and cell cycle control, and are important in the control of cell growth, proliferation, differentiation and transformation. (https://en.wikipedia.org/wiki/Protein_tyrosine_phosphatase)

Winnie Lim | EurekAlert!
Further information:
http://www.a-star.edu.sg

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>