Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore researchers discover a gene that increases incidence of AML

22.09.2014

Latest findings by the Cancer Science Institute of Singapore provide an avenue for targeted therapy to treat this disease

A novel study by the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) found that an increase in a gene known as Leo1 affects other genes that are directly implicated in acute myelogenous leukaemia (AML), increasing the incidence of cancer.

Led by Associate Professor Chng Wee Joo, Deputy Director and Senior Principal Investigator at CSI Singapore and Director of the National University Cancer Institute, Singapore, the scientists discovered that inhibition of Leo1 and Leo1 downstream signalling pathways provide an avenue for targeted treatment of AML. The findings were recently published in Cancer Research, the official journal of the American Association of Cancer Research.

In addition, this is the first study to suggest that the protein PRL-3 plays a role in the regulation of ribonucleic acid (RNA) related processes, a finding which advances the understanding of how the protein contributes to cancer progression. The team's work represents the first large-scale quantitative survey of proteins regulated by PRL-3 in leukaemia.

The elevated expression of PRL-3 has been implicated in the progression and metastasis of an array of cancer types, including gastric, ovarian, cervical, lung, liver, and breast. In particular, the protein PRL-3 is overexpressed in about half of AML patients and associated with poor survival.

Assoc Prof Chng and his team were the first to report that elevated PRL-3 protein expression occurs in about 47 per cent of AML cases while being absent from normal myeloid cells in bone marrow. As a result, PRL-3 is deemed as an attractive therapeutic target that spares normal tissues.

Previously, knowledge of the mechanisms of PRL-3 was limited. In this study, the researchers used a new, advanced SILAC-based mass spectrometry to identify all the protein changes induced by PRL-3 in a comprehensive manner. Using this approach, they discovered that the gene Leo1 serves as a novel target of PRL-3 phosphatase, and inhibition of Leo1 as well as Leo1 downstream signalling pathways provide an avenue for PRL-3 targeted therapy for AML patients.

In the next phase of research, the team is validating several important proteins directly downstream of Leo1 that can possibly be used as biomarkers and drug targets to improve treatment for leukaemia with PRL-3 overexpression.

Assoc Prof Chng said, "Our previous studies showed that PRL-3 is clinical and biologically important in acute myelogenous leukaemia, and may therefore be a useful treatment target. In the current study, we have taken the work further by understanding how PRL-3 confers cancer properties to the leukaemia cells.

This now provides a framework for rational design of a treatment based on mechanistic understanding. In the process, we will also develop biomarkers to better select patients for the treatment and hence, progress towards personalising treatment for leukaemia patients."

Kimberley Wang | Eurek Alert!

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>