Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore research team identifies new drug target in deadly form of leukemia

04.06.2013
A research team led by the Duke-NUS Graduate Medical School (Duke-NUS) in Singapore has identified ways to inhibit the function of a key protein linked to stem cell-like behavior in terminal-stage chronic myeloid leukemia (CML), making it possible to develop drugs that may extend the survival of these patients.

The study, published in the prestigious international journal Proceedings of the National Academy of Sciences, is the result of a long-standing collaboration between Duke-NUS, the Experimental Therapeutics Centre at the Agency for Science, Technology and Research (A*STAR), and the Singapore General Hospital that is focused on developing effective therapies in CML.

CML is a blood cancer that has seen tremendous improvement in treatment outcomes following the introduction of tyrosine kinase inhibitor (TKI) drugs that specifically target the BCR-ABL fusion gene, a genetic abnormality that is characteristic of CML. However, when CML progresses to its terminal stage, known as the blast crisis phase, TKI drugs become ineffective and patients with blast crisis CML rapidly succumb to the disease.

"TKI therapy is highly effective in chronic phase CML, and enables most patients to survive many years. In contrast, patients with blast crisis CML usually succumb to their disease within one year, with most patients dying because they develop drug resistance to TKI therapy," said principal investigator Ong Sin Tiong, associate professor and head of the Laboratory of Hematologic Malignancies in the Cancer and Stem Cell Biology Program at Duke-NUS.

A subset of cells associated with blast crisis CML exhibit characteristics of self-renewing stem cells, suggesting that targeting this particularly malignant and drug-resistant population would be effective in treating blast crisis CML. The team therefore searched for novel targets that will specifically eliminate these cancer stem cells.

Through their efforts, the team identified a protein enzyme, known as the MNK kinase, that was abnormally activated in clinical samples taken from patients with blast crisis CML. Experiments conducted in the lab further unraveled how MNK kinase activation plays a critical role in the progression of CML to the blast crisis phase, and confers stem cell-like behavior on blast crisis cells.

The team tested a panel of drugs that inhibit MNK kinase activity and found that these MNK inhibitors were effective in preventing blast crisis cells from behaving like cancer stem cells in both in vitro laboratory tests and animal studies.

"Our studies identify the MNK kinases as an important therapeutic target in blast crisis CML, and suggest that drug inhibition of MNK kinase will be useful in overcoming TKI resistance, and improving the survival of patients with blast crisis CML," said Ong, who is also a visiting consultant at the National Cancer Center Singapore and Singapore General Hospital.

Importantly, the MNK inhibitor drugs do not appear to be toxic to normal blood stem cells, indicating that drugs targeting MNK kinases may not cause harmful side effects. Ong said he hopes the findings from this study will open new research directions in the treatment of blast crisis CML.

"We are currently collaborating with the Experimental Therapeutics Centre and Singapore General Hospital to develop new drugs to simultaneously target the MNK and the BCR-ABL kinases. The development of dual MNK and BCR-ABL kinase inhibitors to treat patients with blast crisis CML may enhance the survival of patients with this deadly disease," Ong said. He added he ho estimates it will take a few years before these drugs can enter into clinical trials for blast crisis CML.

Dr. Sharon Lim, a research fellow at Duke-NUS, is the first author of the study. Funding for the study was provided by the Duke–National University of Singapore Signature Research Program funded by A*STAR; the Ministry of Health (Singapore); and the National Research Foundation Singapore Clinician Scientist Award, awarded to Ong by the National Medical Research Council.

Juliana Chan | EurekAlert!
Further information:
http://www.dukemedicine.org

Further reports about: CML Cancer Medical Wellness Singapore blast crisis cancer stem cells stem cells

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>