Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore research team identifies new drug target in deadly form of leukemia

04.06.2013
A research team led by the Duke-NUS Graduate Medical School (Duke-NUS) in Singapore has identified ways to inhibit the function of a key protein linked to stem cell-like behavior in terminal-stage chronic myeloid leukemia (CML), making it possible to develop drugs that may extend the survival of these patients.

The study, published in the prestigious international journal Proceedings of the National Academy of Sciences, is the result of a long-standing collaboration between Duke-NUS, the Experimental Therapeutics Centre at the Agency for Science, Technology and Research (A*STAR), and the Singapore General Hospital that is focused on developing effective therapies in CML.

CML is a blood cancer that has seen tremendous improvement in treatment outcomes following the introduction of tyrosine kinase inhibitor (TKI) drugs that specifically target the BCR-ABL fusion gene, a genetic abnormality that is characteristic of CML. However, when CML progresses to its terminal stage, known as the blast crisis phase, TKI drugs become ineffective and patients with blast crisis CML rapidly succumb to the disease.

"TKI therapy is highly effective in chronic phase CML, and enables most patients to survive many years. In contrast, patients with blast crisis CML usually succumb to their disease within one year, with most patients dying because they develop drug resistance to TKI therapy," said principal investigator Ong Sin Tiong, associate professor and head of the Laboratory of Hematologic Malignancies in the Cancer and Stem Cell Biology Program at Duke-NUS.

A subset of cells associated with blast crisis CML exhibit characteristics of self-renewing stem cells, suggesting that targeting this particularly malignant and drug-resistant population would be effective in treating blast crisis CML. The team therefore searched for novel targets that will specifically eliminate these cancer stem cells.

Through their efforts, the team identified a protein enzyme, known as the MNK kinase, that was abnormally activated in clinical samples taken from patients with blast crisis CML. Experiments conducted in the lab further unraveled how MNK kinase activation plays a critical role in the progression of CML to the blast crisis phase, and confers stem cell-like behavior on blast crisis cells.

The team tested a panel of drugs that inhibit MNK kinase activity and found that these MNK inhibitors were effective in preventing blast crisis cells from behaving like cancer stem cells in both in vitro laboratory tests and animal studies.

"Our studies identify the MNK kinases as an important therapeutic target in blast crisis CML, and suggest that drug inhibition of MNK kinase will be useful in overcoming TKI resistance, and improving the survival of patients with blast crisis CML," said Ong, who is also a visiting consultant at the National Cancer Center Singapore and Singapore General Hospital.

Importantly, the MNK inhibitor drugs do not appear to be toxic to normal blood stem cells, indicating that drugs targeting MNK kinases may not cause harmful side effects. Ong said he hopes the findings from this study will open new research directions in the treatment of blast crisis CML.

"We are currently collaborating with the Experimental Therapeutics Centre and Singapore General Hospital to develop new drugs to simultaneously target the MNK and the BCR-ABL kinases. The development of dual MNK and BCR-ABL kinase inhibitors to treat patients with blast crisis CML may enhance the survival of patients with this deadly disease," Ong said. He added he ho estimates it will take a few years before these drugs can enter into clinical trials for blast crisis CML.

Dr. Sharon Lim, a research fellow at Duke-NUS, is the first author of the study. Funding for the study was provided by the Duke–National University of Singapore Signature Research Program funded by A*STAR; the Ministry of Health (Singapore); and the National Research Foundation Singapore Clinician Scientist Award, awarded to Ong by the National Medical Research Council.

Juliana Chan | EurekAlert!
Further information:
http://www.dukemedicine.org

Further reports about: CML Cancer Medical Wellness Singapore blast crisis cancer stem cells stem cells

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>