Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated Digestion

27.04.2012
Nanomaterial made from lipids and silicon dioxide improves absorption of pharmaceuticals

Some medicines have to be taken either before, after, or during a meal because food ingredients can affect its absorption or bioavailability. Australian researchers have now encapsulated drugs in a matrix of silicon dioxide and lipids to simulate the administration of pharmaceuticals with food.



As the researchers report in the journal Angewandte Chemie, drug absorption is increased through control of the enzymatic digestion of the lipid droplets.

For example, the body only absorbs fat-soluble vitamins A and D in the presence of some fat. Also, the bioavailability of many poorly water-soluble drugs increases when they are taken with high-fat meals. There are many techniques for the lipid-based delivery of pharmaceuticals, including emulsions, micelles and “packaging” in liposomes. These methods prevent the active ingredients from precipitating out and improve transportation to the absorption sites in the gastrointestinal tract. However, in order for the drug to become active in the body, it must be released from its lipid shell. The enzymatic decomposition of the lipid coating plays an important role in this process, but it has proven to be difficult to control. In addition, it is difficult to calculate the extent to which such lipid “packaging” really increases the bioavailability of a drug.

Clive Prestidge and a team at the University of South Australia and Monash University have now developed a controllable packaging type. Their material consists of a nanostructured network of silicon dioxide nanoparticles that contains nanoscopic lipid droplets containing the drug. This system is produced by generating a fine emulsion of the drug-containing oil droplets in an aqueous phase. The silicon dioxide particles collect around the droplets at the phase boundary. Spray-drying results in solid microparticles of entrapped lipid droplets.

The team has demonstrated that the lipid in these microparticles is enzymatically digested much more rapidly than pure lipid drops. This is because the nanostructured silicon dioxide network holds the enzymes close to their substrate. The size of the silicon dioxide particles used and the porosity of the resulting matrix determine how fast the enzymatic decomposition of the lipids occurs.

Animal trials with Celecoxib, a drug used to treat arthritis, showed a higher drug content in plasma when the pharmaceutical was orally administered in this new form rather than in its pure state or as drug-containing lipid drops. In contrast to Celecoxib-containing lipid drops, the release rate did not vary from batch to batch or after a longer storage period.

The new nanomaterial imitates the food effect in a predictable fashion and allows for better control of drug release, it could minimise the food effect on drug absorption and enhance more predictable therapeutic responses.

About the Author
Dr Clive Prestidge is the Professor of Colloid and Pharmaceutical Science at the University of South Australia and Associate Director for Nanomedicine at the Ian Wark Research Institute. His research group focuses on nanomaterials for pharmaceutical delivery. As a result, Prestidge filed number of patents and established a company named Cerida, for which he serves as Chief Technical Officer.
Author: Clive A. Prestidge, University of South Australia, Mawson Lakes (Australia), http://unisa.edu.au/iwri/staffpages/cliveprestidge.asp
Title: Hybrid Nanomaterials that Mimic the Food Effect: Controlling Enzymatic Digestion for Enhanced Oral Drug Absorption

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201200409

Clive A. Prestidge | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>