Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The simple truth

07.12.2009
The plant hormone abscisic acid makes use of a surprisingly elegant and straightforward system to regulate its many essential functions

Abcisic acid (ABA) has an awful lot on its plate. This plant hormone handles a staggeringly diverse array of jobs, from controlling seed germination to combating pathogen infection to dealing with drought conditions and scientists have assumed that the mechanisms regulating its activity must be equally elaborate.

“ABA signal transduction pathways were thought to be a web-like, complex network in which many components have ‘some role’,” says Kazuo Shinozaki of the RIKEN Plant Science Center in Yokohama.

Taishi Umezawa of Shinozaki's team recently revealed the involvement of a subset of SNF1-related protein kinase 2 (SnRK2) proteins, which get activated via addition of phosphate groups in the aftermath of ABA signaling, enabling them to turn on downstream transcriptional activators. However, these signals also need to be turned off, and Takashi Hirayama’s team at the RIKEN Advanced Science Institute in Wako identified several protein phosphatase 2C (PP2C) enzymes that may constrain ABA signaling.

By combining their expertise, these two teams have now successfully sketched out the surprisingly simple processes underlying ABA regulation1. Thale cress plants lacking the three members (kinases) of SnRK2 subclass III are minimally responsive even to high ABA levels, highlighting their central role in this pathway. Subsequent experiments revealed that these kinases physically interact with a subset of PP2C enzymes, which directly remove the phosphate group; mutations that inactivate these PP2Cs lead in turn to SnRK2 hyperactivation.

Under normal conditions, PP2C appears to keep SnRK2 in a constant state of inactivation—but when ABA binds its receptor, the resulting complex interacts with PP2C in a manner that lifts this inhibition. Accordingly, the researchers found that mutant forms of PP2C that lack an ABA receptor-binding domain establish resistance to ABA signaling.

The investigators were taken aback by the simplicity of the model they identified. “We think this is the major ABA signaling pathway—and may even be the only ABA signaling pathway—[and it] consists of only four components: soluble ABA receptors, PP2C, SnRK2, and [downstream] transcription factors or other enzymes,” says Shinozaki. “That is very simple compared with our previous understanding.”

Of course, some additional levels of complexity still remain to be uncovered—most notably, understanding ABA’s part in the greater ecosystem of plant hormonal regulation. “We are interested in the molecular basis of cross-talk among plant hormone responses,” says Shinozaki. “Now that one major ABA signaling pathway is established, we can investigate this cross-talk at the molecular level.”

The corresponding author for this highlight is based at the Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6121
http://www.researchsea.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>