Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Simple Steps Prevent Life-Threatening Bloodstream Infections in Children

Pediatric hospitals can significantly decrease the number of bloodstream infections from central venous catheters by following some low-tech rules: Insert the catheter correctly and, above all, keep everything squeaky clean after that.

Yearlong research led by Marlene Miller, M.D. Ms.C., of the Johns Hopkins Children’s Center with colleagues from other hospitals saw a 43 percent drop in the rate of bloodstream infections from catheters in 29 pediatric intensive care units (PICUs) that focused on careful placement and basic daily cleaning of the devices.

Results are to be published in the February issue of the journal Pediatrics.

Each year, 250,000 central line infections occur in the United States, researchers estimate, and up to one-fourth of patients die from them. Between 10 and 20 percent of children who get such infections die from them, researchers believe, and each infection carries a cost of $50, 000.

“If every single pediatric intensive care unit applies this approach rigorously and systematically, I’d be surprised if it didn’t translate into hundreds of lives and millions of dollars saved,” says Miller. Miller serves as vice president for quality transformation at the National Association of Children’s Hospitals and Related Institutions (NACHRI), which spearheaded the initiative.

A central venous catheter, or central line, is a tube inserted into a major blood vessel in the neck, chest or groin to serve as a temporary portal for injected medications and fluids, or blood sampling in patients who need them frequently. Because central lines also provide quick access in emergencies, children in the PICU often have them for weeks or longer. But if inserted incorrectly and, more importantly, mishandled after that, the central line can become a contaminated gateway for bacteria to enter directly into the patient’s bloodstream.

Therefore, investigators say, simple precautions like regularly changing the dressing covering the central line, changing the tubes and caps attached to it, cleaning the line before and after use, and rigorous hand washing before handling the line are essential to keeping bacteria away.

The new research also showed that while proper placement and daily care were both important in reducing catheter-related bloodstream infections, proper daily maintenance played the greatest role in preventing infections in children.

“Children, for example, may require more frequent blood draws through their catheter than adult patients so their central lines are handled more frequently on a day-to-day basis, which makes routine care for the device that much more critical in children than in adults,” Miller says.

The research further showed that medical staff compliance with day-to-day handling of central lines increased from 65 percent to 82 percent during the study period, suggesting that continuing education of medical staff and reminders to follow catheter protocol should be a mainstay in every PICU.

The research, launched as part of a nationwide effort to minimize preventable complications and deaths from this commonly used intravenous device, continues with more than 40 PICUs joining the initiative over the last two years. The effort continues today with more than 60 PICUs and is focused on further improving daily practices for central line handling.

Co-investigators include Michael Griswold, Ph.D., and Gayane Yenokyan, M.D. M.P.H. , of the Johns Hopkins Bloomberg School of Public Health; Mitchell Harris II, Ph.D., NACHRI; Charles Huskins, M.D., Mayo Clinic; Michele Moss, M.D., Arkansas Children’s Hospital; Tom Rice, M.D., Children’s Hospital of Wisconsin; Debra Ridling, R.N. , M.S., C.C.R.N., Children’s Hospital and Regional Medical Center, Seattle; Deborah Campbell, R.N., C. C.C.R.N., Kasair Children’s Hospital; Peter Margolis, M.D. Ph.D., Center for Child Health Quality; Richard Brilli, M.D., Nationwide Children’s Hospital.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, treating more than 90,000 children each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. For more information, please visit

Ekaterina Pesheva | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>