Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple Steps Prevent Life-Threatening Bloodstream Infections in Children

22.01.2010
Pediatric hospitals can significantly decrease the number of bloodstream infections from central venous catheters by following some low-tech rules: Insert the catheter correctly and, above all, keep everything squeaky clean after that.

Yearlong research led by Marlene Miller, M.D. Ms.C., of the Johns Hopkins Children’s Center with colleagues from other hospitals saw a 43 percent drop in the rate of bloodstream infections from catheters in 29 pediatric intensive care units (PICUs) that focused on careful placement and basic daily cleaning of the devices.

Results are to be published in the February issue of the journal Pediatrics.

Each year, 250,000 central line infections occur in the United States, researchers estimate, and up to one-fourth of patients die from them. Between 10 and 20 percent of children who get such infections die from them, researchers believe, and each infection carries a cost of $50, 000.

“If every single pediatric intensive care unit applies this approach rigorously and systematically, I’d be surprised if it didn’t translate into hundreds of lives and millions of dollars saved,” says Miller. Miller serves as vice president for quality transformation at the National Association of Children’s Hospitals and Related Institutions (NACHRI), which spearheaded the initiative.

A central venous catheter, or central line, is a tube inserted into a major blood vessel in the neck, chest or groin to serve as a temporary portal for injected medications and fluids, or blood sampling in patients who need them frequently. Because central lines also provide quick access in emergencies, children in the PICU often have them for weeks or longer. But if inserted incorrectly and, more importantly, mishandled after that, the central line can become a contaminated gateway for bacteria to enter directly into the patient’s bloodstream.

Therefore, investigators say, simple precautions like regularly changing the dressing covering the central line, changing the tubes and caps attached to it, cleaning the line before and after use, and rigorous hand washing before handling the line are essential to keeping bacteria away.

The new research also showed that while proper placement and daily care were both important in reducing catheter-related bloodstream infections, proper daily maintenance played the greatest role in preventing infections in children.

“Children, for example, may require more frequent blood draws through their catheter than adult patients so their central lines are handled more frequently on a day-to-day basis, which makes routine care for the device that much more critical in children than in adults,” Miller says.

The research further showed that medical staff compliance with day-to-day handling of central lines increased from 65 percent to 82 percent during the study period, suggesting that continuing education of medical staff and reminders to follow catheter protocol should be a mainstay in every PICU.

The research, launched as part of a nationwide effort to minimize preventable complications and deaths from this commonly used intravenous device, continues with more than 40 PICUs joining the initiative over the last two years. The effort continues today with more than 60 PICUs and is focused on further improving daily practices for central line handling.

Co-investigators include Michael Griswold, Ph.D., and Gayane Yenokyan, M.D. M.P.H. , of the Johns Hopkins Bloomberg School of Public Health; Mitchell Harris II, Ph.D., NACHRI; Charles Huskins, M.D., Mayo Clinic; Michele Moss, M.D., Arkansas Children’s Hospital; Tom Rice, M.D., Children’s Hospital of Wisconsin; Debra Ridling, R.N. , M.S., C.C.R.N., Children’s Hospital and Regional Medical Center, Seattle; Deborah Campbell, R.N., C. C.C.R.N., Kasair Children’s Hospital; Peter Margolis, M.D. Ph.D., Center for Child Health Quality; Richard Brilli, M.D., Nationwide Children’s Hospital.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, treating more than 90,000 children each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. For more information, please visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>