Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple Steps Prevent Life-Threatening Bloodstream Infections in Children

22.01.2010
Pediatric hospitals can significantly decrease the number of bloodstream infections from central venous catheters by following some low-tech rules: Insert the catheter correctly and, above all, keep everything squeaky clean after that.

Yearlong research led by Marlene Miller, M.D. Ms.C., of the Johns Hopkins Children’s Center with colleagues from other hospitals saw a 43 percent drop in the rate of bloodstream infections from catheters in 29 pediatric intensive care units (PICUs) that focused on careful placement and basic daily cleaning of the devices.

Results are to be published in the February issue of the journal Pediatrics.

Each year, 250,000 central line infections occur in the United States, researchers estimate, and up to one-fourth of patients die from them. Between 10 and 20 percent of children who get such infections die from them, researchers believe, and each infection carries a cost of $50, 000.

“If every single pediatric intensive care unit applies this approach rigorously and systematically, I’d be surprised if it didn’t translate into hundreds of lives and millions of dollars saved,” says Miller. Miller serves as vice president for quality transformation at the National Association of Children’s Hospitals and Related Institutions (NACHRI), which spearheaded the initiative.

A central venous catheter, or central line, is a tube inserted into a major blood vessel in the neck, chest or groin to serve as a temporary portal for injected medications and fluids, or blood sampling in patients who need them frequently. Because central lines also provide quick access in emergencies, children in the PICU often have them for weeks or longer. But if inserted incorrectly and, more importantly, mishandled after that, the central line can become a contaminated gateway for bacteria to enter directly into the patient’s bloodstream.

Therefore, investigators say, simple precautions like regularly changing the dressing covering the central line, changing the tubes and caps attached to it, cleaning the line before and after use, and rigorous hand washing before handling the line are essential to keeping bacteria away.

The new research also showed that while proper placement and daily care were both important in reducing catheter-related bloodstream infections, proper daily maintenance played the greatest role in preventing infections in children.

“Children, for example, may require more frequent blood draws through their catheter than adult patients so their central lines are handled more frequently on a day-to-day basis, which makes routine care for the device that much more critical in children than in adults,” Miller says.

The research further showed that medical staff compliance with day-to-day handling of central lines increased from 65 percent to 82 percent during the study period, suggesting that continuing education of medical staff and reminders to follow catheter protocol should be a mainstay in every PICU.

The research, launched as part of a nationwide effort to minimize preventable complications and deaths from this commonly used intravenous device, continues with more than 40 PICUs joining the initiative over the last two years. The effort continues today with more than 60 PICUs and is focused on further improving daily practices for central line handling.

Co-investigators include Michael Griswold, Ph.D., and Gayane Yenokyan, M.D. M.P.H. , of the Johns Hopkins Bloomberg School of Public Health; Mitchell Harris II, Ph.D., NACHRI; Charles Huskins, M.D., Mayo Clinic; Michele Moss, M.D., Arkansas Children’s Hospital; Tom Rice, M.D., Children’s Hospital of Wisconsin; Debra Ridling, R.N. , M.S., C.C.R.N., Children’s Hospital and Regional Medical Center, Seattle; Deborah Campbell, R.N., C. C.C.R.N., Kasair Children’s Hospital; Peter Margolis, M.D. Ph.D., Center for Child Health Quality; Richard Brilli, M.D., Nationwide Children’s Hospital.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, treating more than 90,000 children each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. For more information, please visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>