Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple nerve cells regulate swimming depth of marine plankton

19.10.2011
Ciliary beating of Platynereis gives insights into an ancestral state of nervous system evolution

As planktonic organisms the larvae of the marine annelid Platynereis swim freely in the open water. They move by activity of their cilia, thousands of tiny hair-like structures forming a band along the larval body and beating coordinately.


Light microscope image of the larva of the marine annelid Platynereis. The larvae swim freely in the sea, moved by activity of their thousands of tiny hair-like structures, which form a band along the larval body (ciliary band), beating coordinately. © Markus Conzelmann, MPI for Developmental Biology


Researchers discovered various neuropeptides in the nerve cells of Platynereis (white). They are highlighted in different colours in this image. © Albina Asadulina and Markus Conzelmann, MPI for Developmental Biology

With changing environmental conditions the larvae swim upward and downward to their appropriate water depth. Scientists of the Max Planck Institute for Developmental Biology in Tübingen, Germany have now identified some signalling substances in the larval nervous system regulating swimming depth of the larvae. These substances influence the ciliary beating and thus hold the larvae in the preferred water depth. The scientists discovered a very simple circuitry of nerve cells underlying this regulation, reflecting an early evolutionary state of the nervous system.

The locomotory system of many animals is muscle based. However, small marine animals often move by cilia. This type of locomotion is more ancient in evolution than muscle-based locomotion and very common in marine plankton. Besides the annelid larvae, the larvae of many marine invertebrates are part of this plankton, for example larvae of snails, sea shells and starfish.

“Not much is known about how the nervous systems of the marine plankton regulate ciliary beating, since the locomotion of intensely explored model organisms like the fruit fly is based on muscles,” says Gáspár Jékely. Together with his team at the Max Planck Institute for Developmental Biology and in cooperation with Thomas A. Münch at the Centre for Integrative Neuroscience in Tübingen, he has examined in detail the nervous system of marine annelid larvae of Platynereis dumerilii.

The ciliary band of Platynereis larvae serves as a swimming motor in the seawater: When cilia beat fast and continuously, larvae swim upward, and when cilia cease beating, the larvae sink. These larvae sense different environmental conditions, e.g. they react to changes in temperature, light and food supply, and alter their movement in the water column accordingly.

In order to gain insight into the regulation of this behaviour, the Tübingen scientists analysed the genes of Platynereis. They discovered several neuronal signalling substances, so-called neuropeptides in their Platynereis gene databases. Moreover, the scientists found that these neuropeptides are produced in single sensory nerve cells of the larva and are released directly at the ciliary band. The scientists concluded that these nerve cells send the sensory information directly on to the cilia. Some of these neuropeptides influence over cilia beating frequency, others act on the frequency of cilia holdups as well. By means of the neuropeptides, the scientists could control the up and down movement of freely swimming larvae and change their swimming depth in the water column deliberately.

“We have discovered that the responsible nervous circuitries are built in an unusually simple way. The sensory nerve cells have motor function at the same time, that is, they send the motion impulse directly to the ciliary band,” says Markus Conzelmann from the Max Planck Institute for Developmental Biology, first author of the study. Such simple circuitries are not known from the regulation of muscle-based locomotion. “We were astonished to find not only one neuropeptide as part of such a simple circuitry, but eleven different ones.”

According to the scientists this discovery gives insights into the form and function of nerve systems in an early stage of evolution. Moreover, the results could be interesting for other fields of marine biology: “We now have a suitable model to further explore the regulation of swimming depth in marine plankton. Since the swimming behaviour of plankton is crucial for the survival and prevalence of thousands of marine animal species, our research results could be relevant for marine ecology,” explains Gáspár Jékely. In his future research he wants to reveal how single nerve cells process the different sensory information from water pressure, temperature or salinity.

The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 325 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Contact
Dr. Gáspár Jékely
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-1310
Email: gaspar.jekely@tuebingen.mpg.de
Janna Eberhardt
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444
Email: presse@tuebingen.mpg.de
Original publication
Markus Conzelmann, Sarah-Lena Offenburger, Albina Asadulina, Timea Keller, Thomas A. Münch and Gáspár Jékely
Neuropeptides regulate swimming depth of Platynereis larvae.
PNAS, doi: 10.1073/pnas.1109085108

Dr. Gáspár Jékely | EurekAlert!
Further information:
http://www.mpg.de/4606470/cells_regulate_swimming_depth_marine_plankton

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>