Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Similar molecular tweaks led both a shrew and a lizard to produce venom

02.11.2009
A harmless digestive enzyme evolved twice into a dangerous toxin in 2 unrelated species

Biologists have shown that independent but similar molecular changes turned a harmless digestive enzyme into a toxin in two unrelated species -- a shrew and a lizard -- giving each a venomous bite.

The work, described this week in the journal Current Biology by researchers at Harvard University, suggests that protein adaptation may be a highly predictable process, one that could eventually help discover other toxins across a wide array of species.

"Similar changes have occurred independently in a shrew and a lizard, causing both to be toxic," says senior author Hopi E. Hoekstra, John L. Loeb Associate Professor of the Natural Sciences in Harvard's Department of Organismic and Evolutionary Biology. "It's remarkable that the same types of changes have independently promoted the same toxic end product."

Lead author Yael T. Aminetzach, a postdoctoral researcher in the same department, suggests that the work has important implications for our understanding of how novel protein function evolves by studying the relationship between an ancestral and harmless protein and its new toxic activity.

"The venom is essentially an overactivation of the original digestive enzyme, amplifying its effects," she says. "What had been a mild anticoagulant in the salivary glands of both species has become a much more extreme compound that causes paralysis and death in prey that is bitten."

In the first part of the study, Aminetzach and her colleagues compared a toxin found in the salivary glands of the insectivorous North American shrew Blarina brevicauda to its closely related digestive enzyme kallikrein. Enzymes are proteins that catalyze, or increase the rates of, chemical reactions; this rate enhancement occurs at a specific region on an enzyme called the active site.

Aminetzach found that the specific molecular differences between kallikrein and its toxic descendent are highly localized around the enzyme's active site.

"Catalysis is fostered by three specific changes that increase enzyme activity," Aminetzach says. "The active site is physically opened up, and the loops surrounding it become more flexible. The area around the active site also becomes positively charged, serving to better guide the substrate directly into the active site."

To further demonstrate that these molecular changes to kallikrein are related to the evolution of toxicity, Aminetzach explored the evolution of another kallikrein-like toxin in the Mexican beaded lizard (Helodermata horridum). She found that this toxin, while distinct from the analogous toxin in the shrew, nonetheless exhibits the same catalytic enhancement relative to the original kallikrein enzyme.

Equally important, she found that this functional change in the lizard toxin is accomplished through similar molecular modifications of kallikrein, and through identical mechanisms of structural alteration of the active site, as in the shrew toxin.

This insight -- namely, that toxins could arise by increasing the catalytic activity of enzymes through a conserved and predictable mechanism -- could be used both to identify other kallikrein-derived toxic proteins and as a method to evolve new protein function in general.

Aminetzach's and Hoekstra's co-authors on the Current Biology paper are John Srouji of Harvard's Department of Molecular and Cellular Biology and Chung Yin Kong of Massachusetts General Hospital. Their work was funded by the Federico Foundation and Harvard University.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>