Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silencing inhibitor of cell replication spurs beta cells to reproduce

17.01.2014
Klaus Kaestner, PhD, professor of Genetics and postdoctoral fellow Dana Avrahami, PhD, from the Perelman School of Medicine, University of Pennsylvania, published a study this week in the Journal of Clinical Investigation, with colleague Benjamin Glaser, MD, from the Hadassah-Hebrew University Medical Center, Jerusalem, and colleagues.

In this study, they were able to replicate human pancreatic beta cells – the cells in our body that produce the critical hormone insulin – in a mouse model in which donor cells were transplanted. The newly replicated cells retained features of mature beta cells and showed a physiological response to glucose.


In cells where p57 was successfully inhibited, beta-cells could undergo DNA replication. Pink: nucleus that has undergone DNA replication. Green: Insulin. Blue: Nuclei counterstained for DNA. White: p57.

Credit: Klaus Kaestner, Ph.D., Perelman School of Medicine, University of Pennsylvania; JCI

The results of this proof-of-principle experiment have implications for helping both type 1 and type 2 diabetic patients. In type 1 diabetes, beta cells are destroyed by the patient's own immune system and thus restoration of their numbers must be coupled with a method of preventing immune-mediated destruction. Similarly, a decrease in the number of functional insulin-producing beta cells contributes to the development of type 2 diabetes, so in principle, restoration of beta-cell mass can reverse or ameliorate both forms of diabetes.

The idea for this study came from newborns with a well-characterized, but rare, condition called hyperinsulinism of infancy, in which beta cells produce too much insulin – the exact opposite of diabetes. The blood sugar levels in these babies are too low. In about one-third of these newborns, most of their pancreatic beta cells are normal, but a small portion of cells lack a specific protein called p57, due to a mutation that occurs in a single or a few beta cells during fetal development. The p57 protein is a cell-cycle inhibitor, and therefore its elimination accelerates beta-cell replication, creating a large clone of beta-cells within the pancreas that secrete too much insulin.

"This 'experiment' of nature inspired our study," says Kaestner. The team used short hairpin RNA, shRNA, to suppress the p57 gene in human beta cells obtained from deceased adult donors. The manipulated beta cells were then transplanted into diabetic mice.

After three weeks, the team found that the beta cells in the human-cell graft had a replication rate at least three-fold higher than those of controls without p57 suppression. The new beta cells also made beta-cell proteins seen in normal mature cells in humans: insulin, PDX1, and NKX6 1, and they had a normal glucose-induced calcium influx, as expected from functional beta cells.

These data show that even beta cells from older human donors, which are normally non-replicating, can be coaxed to divide while maintaining mature beta-cell properties, something that was previously thought by many researchers to be nearly impossible.

Ten to 15 years down the road, say the authors, physicians may be able to treat diabetic patients with a vehicle that homes in exclusively on beta cells and delivers a molecule that silences p57, thereby enhancing beta-cell mass and insulin production, and perhaps even curing the disease.

This work was funded by grants from the NIDDK (U01-DK089529, R01-DK088383, and 5T32DK007314), and the Israel Science Foundation – Juvenile Diabetes Research Foundation.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>