Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced genes as a warning sign of blood cancer

06.08.2009
In many types of cancer, parts of the genetic material of tumor cells are switched off by chemical labels called methyl groups. This kind of methyl labeling ranges among the epigenetic changes that do not change the sequence of DNA building blocks. Such labels are found particularly often in genes which act as important inhibitors of pathogenic cell growth.

Cancer researchers do not know why healthy cells and cancer cells differ in their methylation patterns and why it is particularly the cancer inhibitors that are frequently switched off. The study of these questions is a very promising area of research, because there are drugs available that can prevent the attachment of methyl groups or other epigenetic changes and, thus, at least delay the onset of cancer.

Professor Dr. Christoph Plass at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has investigated, jointly with colleagues from the Ohio State University in Columbus, U.S.A., the processes leading to the different methyl labels in cancer cells. A key question is when the first labels occur in the development of cancer. In their recently published study the investigators used mice affected by chronic lymphocytic leukemia as a model for studying the disease.

The researchers investigated the genetic material of these mice at regular intervals from birth. They discovered first cancer-typical methylation patterns in mice that were only three months old. This means that deviations in methylation occur long before the first signs of disease appear. These were not observed before the animals were thirteen months old. Moreover, the researchers were able to show that methylation patterns in murine DNA are largely corresponding to those found in humans suffering from leukemia. This confirms that the mouse model is suitable for studying the disease.

"Since first deviations in methylation occur so early in mice, we should find out whether this is also true for humans. If so, an early methylation test in high-risk individuals could provide clues about a developing cancer," Christoph Plass says. In this case, preventive medical intervention might be possible. Drugs preventing methyl group attachment might delay the onset of cancer. First clinical studies have already been started to check this. "This is probably most effective in a very early phase of methylation," Plass explains. The researchers believe that the first chemically deactivated genes trigger whole cascades of changes in the genetic material which can hardly be controlled at a later stage.

Keyword: Epigenetics

The cells of the roughly 200 different tissues of the human body can fulfill their special tasks only by regulating the activity of their respective genes very specifically. Although every single gene is equipped with its own control elements, this is not enough for complex coordination. There is a second code that serves as an additional control level. In addition to the genetic switches that are directly integrated in the genetic material, the DNA, genes can also be switched on or off by chemical labeling of the DNA or the DNA packaging proteins. The most common of such epigenetic mutations is the attachment of methyl groups. The effect of these small chemical compounds is that a gene can no longer be read and translated into proteins.

Unlike genetic mutations, which permanently change the sequence of the DNA building blocks, all epigenetic mutations are reversible and, therefore, potential target structures of appropriate drugs.

Shih-Shih Chen, Aparna Raval, Amy J. Johnson, Erin Hertlein, Te-Hui Liu, Victor X. Jin, Mara Sherman, Shu-Jun Liu, David W. Dawson, Katie E. Williams, Mark Lanasa, Sandya Liyanarachchi, Thomas S. Lin, Guido Marcucci, Yuri Pekarsky, Ramana Davuluri, Carlo M. Croce, Denis C. Guttridge, Michael A. Teitell, John C. Byrd,, and Christoph Plass: Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, USA, 2009, DOI: 10.1073/pnas.0906455106

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstaedt | EurekAlert!
Further information:
http://www.dkfz.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

“Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination

23.05.2017 | Life Sciences

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>