Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced genes as a warning sign of blood cancer

06.08.2009
In many types of cancer, parts of the genetic material of tumor cells are switched off by chemical labels called methyl groups. This kind of methyl labeling ranges among the epigenetic changes that do not change the sequence of DNA building blocks. Such labels are found particularly often in genes which act as important inhibitors of pathogenic cell growth.

Cancer researchers do not know why healthy cells and cancer cells differ in their methylation patterns and why it is particularly the cancer inhibitors that are frequently switched off. The study of these questions is a very promising area of research, because there are drugs available that can prevent the attachment of methyl groups or other epigenetic changes and, thus, at least delay the onset of cancer.

Professor Dr. Christoph Plass at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has investigated, jointly with colleagues from the Ohio State University in Columbus, U.S.A., the processes leading to the different methyl labels in cancer cells. A key question is when the first labels occur in the development of cancer. In their recently published study the investigators used mice affected by chronic lymphocytic leukemia as a model for studying the disease.

The researchers investigated the genetic material of these mice at regular intervals from birth. They discovered first cancer-typical methylation patterns in mice that were only three months old. This means that deviations in methylation occur long before the first signs of disease appear. These were not observed before the animals were thirteen months old. Moreover, the researchers were able to show that methylation patterns in murine DNA are largely corresponding to those found in humans suffering from leukemia. This confirms that the mouse model is suitable for studying the disease.

"Since first deviations in methylation occur so early in mice, we should find out whether this is also true for humans. If so, an early methylation test in high-risk individuals could provide clues about a developing cancer," Christoph Plass says. In this case, preventive medical intervention might be possible. Drugs preventing methyl group attachment might delay the onset of cancer. First clinical studies have already been started to check this. "This is probably most effective in a very early phase of methylation," Plass explains. The researchers believe that the first chemically deactivated genes trigger whole cascades of changes in the genetic material which can hardly be controlled at a later stage.

Keyword: Epigenetics

The cells of the roughly 200 different tissues of the human body can fulfill their special tasks only by regulating the activity of their respective genes very specifically. Although every single gene is equipped with its own control elements, this is not enough for complex coordination. There is a second code that serves as an additional control level. In addition to the genetic switches that are directly integrated in the genetic material, the DNA, genes can also be switched on or off by chemical labeling of the DNA or the DNA packaging proteins. The most common of such epigenetic mutations is the attachment of methyl groups. The effect of these small chemical compounds is that a gene can no longer be read and translated into proteins.

Unlike genetic mutations, which permanently change the sequence of the DNA building blocks, all epigenetic mutations are reversible and, therefore, potential target structures of appropriate drugs.

Shih-Shih Chen, Aparna Raval, Amy J. Johnson, Erin Hertlein, Te-Hui Liu, Victor X. Jin, Mara Sherman, Shu-Jun Liu, David W. Dawson, Katie E. Williams, Mark Lanasa, Sandya Liyanarachchi, Thomas S. Lin, Guido Marcucci, Yuri Pekarsky, Ramana Davuluri, Carlo M. Croce, Denis C. Guttridge, Michael A. Teitell, John C. Byrd,, and Christoph Plass: Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, USA, 2009, DOI: 10.1073/pnas.0906455106

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstaedt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>