Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silenced genes as a warning sign of blood cancer

In many types of cancer, parts of the genetic material of tumor cells are switched off by chemical labels called methyl groups. This kind of methyl labeling ranges among the epigenetic changes that do not change the sequence of DNA building blocks. Such labels are found particularly often in genes which act as important inhibitors of pathogenic cell growth.

Cancer researchers do not know why healthy cells and cancer cells differ in their methylation patterns and why it is particularly the cancer inhibitors that are frequently switched off. The study of these questions is a very promising area of research, because there are drugs available that can prevent the attachment of methyl groups or other epigenetic changes and, thus, at least delay the onset of cancer.

Professor Dr. Christoph Plass at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has investigated, jointly with colleagues from the Ohio State University in Columbus, U.S.A., the processes leading to the different methyl labels in cancer cells. A key question is when the first labels occur in the development of cancer. In their recently published study the investigators used mice affected by chronic lymphocytic leukemia as a model for studying the disease.

The researchers investigated the genetic material of these mice at regular intervals from birth. They discovered first cancer-typical methylation patterns in mice that were only three months old. This means that deviations in methylation occur long before the first signs of disease appear. These were not observed before the animals were thirteen months old. Moreover, the researchers were able to show that methylation patterns in murine DNA are largely corresponding to those found in humans suffering from leukemia. This confirms that the mouse model is suitable for studying the disease.

"Since first deviations in methylation occur so early in mice, we should find out whether this is also true for humans. If so, an early methylation test in high-risk individuals could provide clues about a developing cancer," Christoph Plass says. In this case, preventive medical intervention might be possible. Drugs preventing methyl group attachment might delay the onset of cancer. First clinical studies have already been started to check this. "This is probably most effective in a very early phase of methylation," Plass explains. The researchers believe that the first chemically deactivated genes trigger whole cascades of changes in the genetic material which can hardly be controlled at a later stage.

Keyword: Epigenetics

The cells of the roughly 200 different tissues of the human body can fulfill their special tasks only by regulating the activity of their respective genes very specifically. Although every single gene is equipped with its own control elements, this is not enough for complex coordination. There is a second code that serves as an additional control level. In addition to the genetic switches that are directly integrated in the genetic material, the DNA, genes can also be switched on or off by chemical labeling of the DNA or the DNA packaging proteins. The most common of such epigenetic mutations is the attachment of methyl groups. The effect of these small chemical compounds is that a gene can no longer be read and translated into proteins.

Unlike genetic mutations, which permanently change the sequence of the DNA building blocks, all epigenetic mutations are reversible and, therefore, potential target structures of appropriate drugs.

Shih-Shih Chen, Aparna Raval, Amy J. Johnson, Erin Hertlein, Te-Hui Liu, Victor X. Jin, Mara Sherman, Shu-Jun Liu, David W. Dawson, Katie E. Williams, Mark Lanasa, Sandya Liyanarachchi, Thomas S. Lin, Guido Marcucci, Yuri Pekarsky, Ramana Davuluri, Carlo M. Croce, Denis C. Guttridge, Michael A. Teitell, John C. Byrd,, and Christoph Plass: Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences, USA, 2009, DOI: 10.1073/pnas.0906455106

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstaedt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>