Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silence of the genes

25.07.2011
As in other multicellular organisms, plants have evolved mechanisms to maintain genome stability and integrity

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama. The researchers propose that a similar mechanism may also help to protect plant genomes from the potentially harmful effects of DNA elements, such as transposons, or ‘jumping genes’. “If left unhindered, transposable elements can cause havoc in the genome, for example by inserting themselves into essential genes,” says Seki.

The DNA of eukaryotes—organisms with nucleated cells—is packaged in a complex structure called chromatin within chromosomes. Chromatin also contains DNA-binding proteins called histones. When in its open conformation, known as euchromatin, the DNA is accessible to transcription factors, allowing gene expression to proceed. However, when in its highly condensed form—heterochromatin—gene expression is silenced.

The transition from euchromatin to heterochromatin requires chemical modification of both DNA and histones. These so-called epigenetic changes involve the methylation of DNA by enzymes called DNA methyltransferases, and the elimination of epigenetic marks on histones by other enzymes called histone deacetylases. In addition to silencing gene expression, heterochromatin formation may protect against the potentially damaging effects of transposons by blocking their replication.

Seki and his colleagues studied the regulation of heterochromatin formation in Arabidopsis thaliana, a small flowering related to the mustard plant. “Arabidopsis is a widely used model species for studying epigenetic changes in plants,” explains Seki.

Uniquely in plants, DNA methylation resulting in heterochromatin formation is triggered by small RNA molecules. This process is known as RNA-directed DNA methylation, and involves the DNA methyltransferase MET1 and the histone deacetylase HDA6. However, the overall role of HDA6 in heterochromatin formation remained unclear.

By comparing the RNA transcript profiles of normal and mutant plants lacking functional HDA6, the researchers identified 157 target genes spread across the Arabidopsis genome. In some target genes in the mutant plants they found that DNA methylation was completely lost, allowing these genes to be expressed. They also found that the target specificity of HDA6 was unexpectedly much greater than that of MET1.

“Our findings suggest that HDA6 recruits MET1 to specific target genes, allowing it to regulate gene silencing on a genome-wide scale,” says Seki.

In addition to this general role, the researchers propose that HDA6 may regulate transposon silencing through heterochromatin formation in plant gametes. They also express the hope that their research will help illuminate related processes in humans.

The corresponding author for this highlight is based at the Plant Genomic Network Research Team, RIKEN Plant Science Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>