Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silence of the genes

25.07.2011
As in other multicellular organisms, plants have evolved mechanisms to maintain genome stability and integrity

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama. The researchers propose that a similar mechanism may also help to protect plant genomes from the potentially harmful effects of DNA elements, such as transposons, or ‘jumping genes’. “If left unhindered, transposable elements can cause havoc in the genome, for example by inserting themselves into essential genes,” says Seki.

The DNA of eukaryotes—organisms with nucleated cells—is packaged in a complex structure called chromatin within chromosomes. Chromatin also contains DNA-binding proteins called histones. When in its open conformation, known as euchromatin, the DNA is accessible to transcription factors, allowing gene expression to proceed. However, when in its highly condensed form—heterochromatin—gene expression is silenced.

The transition from euchromatin to heterochromatin requires chemical modification of both DNA and histones. These so-called epigenetic changes involve the methylation of DNA by enzymes called DNA methyltransferases, and the elimination of epigenetic marks on histones by other enzymes called histone deacetylases. In addition to silencing gene expression, heterochromatin formation may protect against the potentially damaging effects of transposons by blocking their replication.

Seki and his colleagues studied the regulation of heterochromatin formation in Arabidopsis thaliana, a small flowering related to the mustard plant. “Arabidopsis is a widely used model species for studying epigenetic changes in plants,” explains Seki.

Uniquely in plants, DNA methylation resulting in heterochromatin formation is triggered by small RNA molecules. This process is known as RNA-directed DNA methylation, and involves the DNA methyltransferase MET1 and the histone deacetylase HDA6. However, the overall role of HDA6 in heterochromatin formation remained unclear.

By comparing the RNA transcript profiles of normal and mutant plants lacking functional HDA6, the researchers identified 157 target genes spread across the Arabidopsis genome. In some target genes in the mutant plants they found that DNA methylation was completely lost, allowing these genes to be expressed. They also found that the target specificity of HDA6 was unexpectedly much greater than that of MET1.

“Our findings suggest that HDA6 recruits MET1 to specific target genes, allowing it to regulate gene silencing on a genome-wide scale,” says Seki.

In addition to this general role, the researchers propose that HDA6 may regulate transposon silencing through heterochromatin formation in plant gametes. They also express the hope that their research will help illuminate related processes in humans.

The corresponding author for this highlight is based at the Plant Genomic Network Research Team, RIKEN Plant Science Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>