Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silence of the genes

25.07.2011
As in other multicellular organisms, plants have evolved mechanisms to maintain genome stability and integrity

A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama. The researchers propose that a similar mechanism may also help to protect plant genomes from the potentially harmful effects of DNA elements, such as transposons, or ‘jumping genes’. “If left unhindered, transposable elements can cause havoc in the genome, for example by inserting themselves into essential genes,” says Seki.

The DNA of eukaryotes—organisms with nucleated cells—is packaged in a complex structure called chromatin within chromosomes. Chromatin also contains DNA-binding proteins called histones. When in its open conformation, known as euchromatin, the DNA is accessible to transcription factors, allowing gene expression to proceed. However, when in its highly condensed form—heterochromatin—gene expression is silenced.

The transition from euchromatin to heterochromatin requires chemical modification of both DNA and histones. These so-called epigenetic changes involve the methylation of DNA by enzymes called DNA methyltransferases, and the elimination of epigenetic marks on histones by other enzymes called histone deacetylases. In addition to silencing gene expression, heterochromatin formation may protect against the potentially damaging effects of transposons by blocking their replication.

Seki and his colleagues studied the regulation of heterochromatin formation in Arabidopsis thaliana, a small flowering related to the mustard plant. “Arabidopsis is a widely used model species for studying epigenetic changes in plants,” explains Seki.

Uniquely in plants, DNA methylation resulting in heterochromatin formation is triggered by small RNA molecules. This process is known as RNA-directed DNA methylation, and involves the DNA methyltransferase MET1 and the histone deacetylase HDA6. However, the overall role of HDA6 in heterochromatin formation remained unclear.

By comparing the RNA transcript profiles of normal and mutant plants lacking functional HDA6, the researchers identified 157 target genes spread across the Arabidopsis genome. In some target genes in the mutant plants they found that DNA methylation was completely lost, allowing these genes to be expressed. They also found that the target specificity of HDA6 was unexpectedly much greater than that of MET1.

“Our findings suggest that HDA6 recruits MET1 to specific target genes, allowing it to regulate gene silencing on a genome-wide scale,” says Seki.

In addition to this general role, the researchers propose that HDA6 may regulate transposon silencing through heterochromatin formation in plant gametes. They also express the hope that their research will help illuminate related processes in humans.

The corresponding author for this highlight is based at the Plant Genomic Network Research Team, RIKEN Plant Science Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>