Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant findings about protein architecture may aid in drug design, generation of nanomaterials

12.04.2010
Researchers in Singapore report major step forward in effort to understand and engineer protein structure

Researchers in Singapore are reporting this week that they have gleaned key insights into the architecture of a protein that controls iron levels in almost all organisms. Their study culminated in one of the first successful attempts to take apart a complex biological nanostructure and isolate the rules that govern its natural formation.

The Nanyang Technological University team's work on the protein ferritin, the results of which appear in this week's issue of the Journal of Biological Chemistry, is expected to have significant ramifications on the fields of drug design and nanomaterials.

"Engineering the structure of a protein is one of the ultimate dreams of structural biologists," wrote one of the journal's peer reviewers, "and approaching that dream is greatly enabled through studies aimed at finding out what governs the nanoarchitecture of the protein."

Brendan P. Orner, the assistant professor who oversaw the team's work, described the protein ferritin as a potential model for explaining complicated protein structure in general.

Across the biological kingdoms, ferritin regulates the distribution of iron, which is necessary for a number of cellular functions but also forms reactive ions that can be lethal to cells. Shaped like a spherical nanocage, ferritin is made up of 24 proteins, and it sequesters the reactive iron ions in its hollow interior. In humans, ferritin prevents iron deficiency and overload.

"The rules that govern self-assembling nanosystems, like the ferritin model, are poorly understood," Orner explained. "We systematically analyzed the interactions between the 24 ferritin units that make up the nanocage and identified the hot spots that are crucial to the cage's formation."

Their goal was to discover which amino acids are responsible for assembling the cage, and they found that it is possible to both disassemble ferritin by removing single side chains of amino acids and, surprisingly, to stabilize the structure by removing other side chains.

Understanding the assembly of the nanocage could open the door to drug design that will disrupt the structure and function of defective proteins that cause or contribute to disease. It also may aid in the creation of biological nanostructures in which scientists can grow special particles and materials with a variety of properties and applications.

"Cell biology provides many structures that are on the nanoscale and have amazing complexity and symmetry," Orner said. "The problem is that many of these structures are, like ferritin, self-assembled proteins, and, if we are going to use them for nanomaterials applications, we need to understand the fundamentals that make them form this way naturally."

Orner and his team members are particularly interested in growing nanoparticles of precise dimensions inside ferritin shells. Already, they have developed a new method to grow gold nanoparticles in them.

"Slight deviations in size or shape can radically change nanoparticles' properties, particularly in the case of metals and semiconductors," Orner said. "Our ferritin proteins are hollow, so, when we grow mineral or metal clusters inside them, the growth stops when the nanoparticles reach the limits of the protein shell."

By studying the rules that control the folding and assembly of such a protein in nature, Orner said, the investigators hope to be able to manipulate them one day to create new proteins with novel sizes and shapes and, therefore, generate nanoparticles of novel sizes and shapes inside them.

"Those nanoparticles could be used for in-vitro assays to do high-throughput drug screening of some protein-protein interactions involved in virus infection and cancer, for example," he said.

Orner's team included doctoral students Yu Zhang and Rongli Fan, undergraduate students Siti Raudah, Huihian Teo and Gwenda Teo, and scholar Xioming Sun. Their research was funded by the Singapore Ministry of Education and Nanyang Technological University.

Their resulting article has been named a "Paper of the Week" by the Journal of Biological Chemistry, putting it in the top 1 percent of papers reviewed by the editorial board in terms of significance and overall importance.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>