Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Significant findings about protein architecture may aid in drug design, generation of nanomaterials

12.04.2010
Researchers in Singapore report major step forward in effort to understand and engineer protein structure

Researchers in Singapore are reporting this week that they have gleaned key insights into the architecture of a protein that controls iron levels in almost all organisms. Their study culminated in one of the first successful attempts to take apart a complex biological nanostructure and isolate the rules that govern its natural formation.

The Nanyang Technological University team's work on the protein ferritin, the results of which appear in this week's issue of the Journal of Biological Chemistry, is expected to have significant ramifications on the fields of drug design and nanomaterials.

"Engineering the structure of a protein is one of the ultimate dreams of structural biologists," wrote one of the journal's peer reviewers, "and approaching that dream is greatly enabled through studies aimed at finding out what governs the nanoarchitecture of the protein."

Brendan P. Orner, the assistant professor who oversaw the team's work, described the protein ferritin as a potential model for explaining complicated protein structure in general.

Across the biological kingdoms, ferritin regulates the distribution of iron, which is necessary for a number of cellular functions but also forms reactive ions that can be lethal to cells. Shaped like a spherical nanocage, ferritin is made up of 24 proteins, and it sequesters the reactive iron ions in its hollow interior. In humans, ferritin prevents iron deficiency and overload.

"The rules that govern self-assembling nanosystems, like the ferritin model, are poorly understood," Orner explained. "We systematically analyzed the interactions between the 24 ferritin units that make up the nanocage and identified the hot spots that are crucial to the cage's formation."

Their goal was to discover which amino acids are responsible for assembling the cage, and they found that it is possible to both disassemble ferritin by removing single side chains of amino acids and, surprisingly, to stabilize the structure by removing other side chains.

Understanding the assembly of the nanocage could open the door to drug design that will disrupt the structure and function of defective proteins that cause or contribute to disease. It also may aid in the creation of biological nanostructures in which scientists can grow special particles and materials with a variety of properties and applications.

"Cell biology provides many structures that are on the nanoscale and have amazing complexity and symmetry," Orner said. "The problem is that many of these structures are, like ferritin, self-assembled proteins, and, if we are going to use them for nanomaterials applications, we need to understand the fundamentals that make them form this way naturally."

Orner and his team members are particularly interested in growing nanoparticles of precise dimensions inside ferritin shells. Already, they have developed a new method to grow gold nanoparticles in them.

"Slight deviations in size or shape can radically change nanoparticles' properties, particularly in the case of metals and semiconductors," Orner said. "Our ferritin proteins are hollow, so, when we grow mineral or metal clusters inside them, the growth stops when the nanoparticles reach the limits of the protein shell."

By studying the rules that control the folding and assembly of such a protein in nature, Orner said, the investigators hope to be able to manipulate them one day to create new proteins with novel sizes and shapes and, therefore, generate nanoparticles of novel sizes and shapes inside them.

"Those nanoparticles could be used for in-vitro assays to do high-throughput drug screening of some protein-protein interactions involved in virus infection and cancer, for example," he said.

Orner's team included doctoral students Yu Zhang and Rongli Fan, undergraduate students Siti Raudah, Huihian Teo and Gwenda Teo, and scholar Xioming Sun. Their research was funded by the Singapore Ministry of Education and Nanyang Technological University.

Their resulting article has been named a "Paper of the Week" by the Journal of Biological Chemistry, putting it in the top 1 percent of papers reviewed by the editorial board in terms of significance and overall importance.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions.

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>