Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signals found that recruit host animals' cells, enabling breast cancer metastasis

23.05.2014

Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained

Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings appears in the online early May edition of the Proceedings of the National Academy of Sciences.

"Blocking one of these cell-recruiting signals in a mouse's tumor made it much less likely to metastasize or spread," says Gregg Semenza, M.D., Ph.D., a professor and director of the Vascular Biology Program in the Johns Hopkins University School of Medicine's Institute for Cell Engineering.

"If a drug can be found that safely blocks the same signal in humans, it could be a very useful addition to current breast cancer treatment — particularly for patients with chemotherapy-resistant tumors."

Semenza's research group studies a chemical signal called hypoxia-inducible factor 1 (HIF-1), which cells release to help them cope with low-oxygen conditions. Earlier, the group determined that HIF-1 helps breast tumor cells survive the low-oxygen conditions in which they often live, and spread to other parts of the body such as the lungs. "In breast cancer, it's not the original tumor that kills patients, but the metastases," says Semenza.

Also in a previous study, Semenza's group found that HIF-1 induced adult stem cells called mesenchymal stem cells release a signal to nearby breast cancer cells, which made them more likely to spread. The researchers suspected this communication might run both ways and that the stem cells' presence might also help the cancer to recruit the host animal's white blood cells. Breast cancers need the support of several types of host cells in order to metastasize, including mesenchymal stem cells and one type of white blood cell, Semenza notes.

Studying tumor cells grown in a dish, Semenza's team used chemicals that blocked the functions of various proteins to map a web of signals flying among breast cancer cells, menenchymal stem cells and white blood cells. One positive feedback loop brought mesenchymal stem cells close in to the breast cancer cells. A separate loop of signals between the stem cells and cancer cells caused the cancer cells to release a chemical "beacon" that drew in white blood cells. The concentrations of all the signals in the web were increased by the presence of HIF-1 — and ultimately, by low-oxygen conditions.

The team then used genetic engineering to reduce the levels of the cell-recruiting signals in breast cancer cells and implanted those cells into female mice. Compared with unaltered breast cancer cells, those with reduced recruiting power grew into similar-sized tumors, Semenza says, but were much less likely to spread.

All of the breast cancer cells used in the study were so-called triple-negative, meaning they lack receptors for estrogen, progesterone and human epidermal growth factor receptor 2, so they do not respond to therapies that target those receptors. In people, triple-negative breast cancers also tend to be more deadly than other breast cancers because they contain more HIF-1, Semenza says. "This study adds to the evidence that a HIF-1 inhibitor drug could be an effective addition to chemotherapy regimens, especially for triple-negative breast cancers," he says. Several potential drugs of this kind are now in the early stages of development, he notes.

###

Link to the paper: http://www.pnas.org/content/early/2014/05/01/1406655111.abstract

Other authors on this paper were Pallavi Chaturvedi, Daniele M. Gilkes and Naoharu Takano, all of the Johns Hopkins University School of Medicine.

Related stories:

Johns Hopkins Researchers Discover How Breast Cancer Spreads to Lung http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers_discover_how_breast_cancer_spreads_to_lung

Johns Hopkins Researchers Link Cell Division And Oxygen Levels http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers_link_cell_division_and_oxygen_levels

Shawna Williams | Eurek Alert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine breast conditions low-oxygen mesenchymal metastasis signals

More articles from Life Sciences:

nachricht New technology helps ID aggressive early breast cancer
01.07.2016 | University of Michigan Health System

nachricht In times of great famine, microalgae digest themselves
01.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>