Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signals found that recruit host animals' cells, enabling breast cancer metastasis

23.05.2014

Mouse studies suggest that blocking aid from white blood cells and stem cells could keep tumors contained

Working with mice, Johns Hopkins researchers report they have identified chemical signals that certain breast cancers use to recruit two types of normal cells needed for the cancers' spread. A description of the findings appears in the online early May edition of the Proceedings of the National Academy of Sciences.

"Blocking one of these cell-recruiting signals in a mouse's tumor made it much less likely to metastasize or spread," says Gregg Semenza, M.D., Ph.D., a professor and director of the Vascular Biology Program in the Johns Hopkins University School of Medicine's Institute for Cell Engineering.

"If a drug can be found that safely blocks the same signal in humans, it could be a very useful addition to current breast cancer treatment — particularly for patients with chemotherapy-resistant tumors."

Semenza's research group studies a chemical signal called hypoxia-inducible factor 1 (HIF-1), which cells release to help them cope with low-oxygen conditions. Earlier, the group determined that HIF-1 helps breast tumor cells survive the low-oxygen conditions in which they often live, and spread to other parts of the body such as the lungs. "In breast cancer, it's not the original tumor that kills patients, but the metastases," says Semenza.

Also in a previous study, Semenza's group found that HIF-1 induced adult stem cells called mesenchymal stem cells release a signal to nearby breast cancer cells, which made them more likely to spread. The researchers suspected this communication might run both ways and that the stem cells' presence might also help the cancer to recruit the host animal's white blood cells. Breast cancers need the support of several types of host cells in order to metastasize, including mesenchymal stem cells and one type of white blood cell, Semenza notes.

Studying tumor cells grown in a dish, Semenza's team used chemicals that blocked the functions of various proteins to map a web of signals flying among breast cancer cells, menenchymal stem cells and white blood cells. One positive feedback loop brought mesenchymal stem cells close in to the breast cancer cells. A separate loop of signals between the stem cells and cancer cells caused the cancer cells to release a chemical "beacon" that drew in white blood cells. The concentrations of all the signals in the web were increased by the presence of HIF-1 — and ultimately, by low-oxygen conditions.

The team then used genetic engineering to reduce the levels of the cell-recruiting signals in breast cancer cells and implanted those cells into female mice. Compared with unaltered breast cancer cells, those with reduced recruiting power grew into similar-sized tumors, Semenza says, but were much less likely to spread.

All of the breast cancer cells used in the study were so-called triple-negative, meaning they lack receptors for estrogen, progesterone and human epidermal growth factor receptor 2, so they do not respond to therapies that target those receptors. In people, triple-negative breast cancers also tend to be more deadly than other breast cancers because they contain more HIF-1, Semenza says. "This study adds to the evidence that a HIF-1 inhibitor drug could be an effective addition to chemotherapy regimens, especially for triple-negative breast cancers," he says. Several potential drugs of this kind are now in the early stages of development, he notes.

###

Link to the paper: http://www.pnas.org/content/early/2014/05/01/1406655111.abstract

Other authors on this paper were Pallavi Chaturvedi, Daniele M. Gilkes and Naoharu Takano, all of the Johns Hopkins University School of Medicine.

Related stories:

Johns Hopkins Researchers Discover How Breast Cancer Spreads to Lung http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers_discover_how_breast_cancer_spreads_to_lung

Johns Hopkins Researchers Link Cell Division And Oxygen Levels http://www.hopkinsmedicine.org/news/media/releases/johns_hopkins_researchers_link_cell_division_and_oxygen_levels

Shawna Williams | Eurek Alert!
Further information:
http://www.jhmi.edu

Further reports about: Medicine breast conditions low-oxygen mesenchymal metastasis signals

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>