Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling Path in Brain May Prevent That ‘I’m Full’ Message

04.03.2011
Researchers at UT Southwestern Medical Center have identified a signaling pathway in the brain that’s sufficient to induce cellular leptin resistance, a problem that decreases the body’s ability to “hear” that it is full and should stop eating.

“Leptin resistance is a significant factor, yet the mechanisms that underlie the problem remain unclear,” said Dr. Joel Elmquist, professor of internal medicine and pharmacology at UT Southwestern and senior author of the study appearing in the March issue of Cell Metabolism. “The fact that this cellular pathway may be involved is a novel observation.”

Leptin is a hormone released by fat cells that is known to indicate fullness, or satiety, in the brain. If the body is exposed to too much leptin, however, it will become resistant to the hormone. Once that occurs, the body can’t “hear” the hormonal messages telling the body to stop eating and burn fat. Instead, a person remains hungry, craves sweets and stores more fat instead of burning it.

Leptin resistance also causes an increase in visceral, or belly, fat, which has been shown to predispose people to an increased risk of heart disease, diabetes and metabolic syndrome.

For the current study, the researchers induced leptin resistance in organotypic brain slices from mice. This research technique, used commonly in neuroscience, enabled the researchers to maintain the cellular and anatomical relationships and some of the network connections that normally exist within the brain.

“We’re not dispersing cells. We’re leaving them in a microenvironment that simulates what’s going on in the brain,” Dr. Elmquist said.

When the researchers began manipulating the network – known as cAMP-EPAC pathway – they found that activating this previously unexplored signaling avenue is enough to induce leptin resistance within hypothalamic neurons, a critical site of leptin action. They also found that when the pathway was blocked, the cells were no longer resistant to leptin.

“In the follow-up experiments, which we conducted in mice, we were able to induce leptin resistance simply by infusing activators of this pathway, further supporting our theory that this signaling pathway may contribute to leptin resistance in obesity,” said Dr. Makoto Fukuda, instructor of internal medicine at UT Southwestern and the study’s lead author.

Dr. Elmquist said that while the EPAC signaling pathway itself is not novel, this is the first time it has been studied in the hypothalamus and in the context of energy balance and leptin signaling.

The next step, Dr. Elmquist said, is to investigate how critical the EPAC pathway actually is in leptin responsive neurons and to determine its role in maintaining energy balance and leptin sensitivity.

“These results are potentially interesting and provocative, but the physiological importance remains to be seen,” Dr. Elmquist said. “If, however, this pathway is indeed important, it will offer new insights into the mechanisms that high levels of leptin cause in leptin resistance.”

Other UT Southwestern researchers involved in the study were Drs. Kevin Williams and Laurent Gautron, both instructors of internal medicine.

The study was supported by the National Institutes of Health, American Diabetes Association, American Heart Association and the Smith Family Foundation.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>