Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling Path in Brain May Prevent That ‘I’m Full’ Message

04.03.2011
Researchers at UT Southwestern Medical Center have identified a signaling pathway in the brain that’s sufficient to induce cellular leptin resistance, a problem that decreases the body’s ability to “hear” that it is full and should stop eating.

“Leptin resistance is a significant factor, yet the mechanisms that underlie the problem remain unclear,” said Dr. Joel Elmquist, professor of internal medicine and pharmacology at UT Southwestern and senior author of the study appearing in the March issue of Cell Metabolism. “The fact that this cellular pathway may be involved is a novel observation.”

Leptin is a hormone released by fat cells that is known to indicate fullness, or satiety, in the brain. If the body is exposed to too much leptin, however, it will become resistant to the hormone. Once that occurs, the body can’t “hear” the hormonal messages telling the body to stop eating and burn fat. Instead, a person remains hungry, craves sweets and stores more fat instead of burning it.

Leptin resistance also causes an increase in visceral, or belly, fat, which has been shown to predispose people to an increased risk of heart disease, diabetes and metabolic syndrome.

For the current study, the researchers induced leptin resistance in organotypic brain slices from mice. This research technique, used commonly in neuroscience, enabled the researchers to maintain the cellular and anatomical relationships and some of the network connections that normally exist within the brain.

“We’re not dispersing cells. We’re leaving them in a microenvironment that simulates what’s going on in the brain,” Dr. Elmquist said.

When the researchers began manipulating the network – known as cAMP-EPAC pathway – they found that activating this previously unexplored signaling avenue is enough to induce leptin resistance within hypothalamic neurons, a critical site of leptin action. They also found that when the pathway was blocked, the cells were no longer resistant to leptin.

“In the follow-up experiments, which we conducted in mice, we were able to induce leptin resistance simply by infusing activators of this pathway, further supporting our theory that this signaling pathway may contribute to leptin resistance in obesity,” said Dr. Makoto Fukuda, instructor of internal medicine at UT Southwestern and the study’s lead author.

Dr. Elmquist said that while the EPAC signaling pathway itself is not novel, this is the first time it has been studied in the hypothalamus and in the context of energy balance and leptin signaling.

The next step, Dr. Elmquist said, is to investigate how critical the EPAC pathway actually is in leptin responsive neurons and to determine its role in maintaining energy balance and leptin sensitivity.

“These results are potentially interesting and provocative, but the physiological importance remains to be seen,” Dr. Elmquist said. “If, however, this pathway is indeed important, it will offer new insights into the mechanisms that high levels of leptin cause in leptin resistance.”

Other UT Southwestern researchers involved in the study were Drs. Kevin Williams and Laurent Gautron, both instructors of internal medicine.

The study was supported by the National Institutes of Health, American Diabetes Association, American Heart Association and the Smith Family Foundation.

This news release is available on our World Wide Web home page at
http://www.utsouthwestern.edu/home/news/index.html
To automatically receive news releases from UT Southwestern via e-mail,
subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>