Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Signaling Molecule Identified as Essential for Maintaining a Balanced Immune Response

St. Jude Children’s Research Hospital scientists show that the molecule serves as a bridge between the two arms of the immune system that provides a new mechanism guiding T cell differentiation

St. Jude Children’s Research Hospital investigators have identified a signaling molecule that functions like a factory supervisor to ensure that the right mix of specialized T cells is available to fight infections and guard against autoimmune disease.

The research also showed the molecule, phosphatase MKP-1, is an important regulator of immune balance. Working in laboratory cell lines and mice with specially engineered immune systems, scientists demonstrated that MKP-1 serves as a bridge between the innate immune response that is the body’s first line of defense against infection and the more specialized adaptive immune response that follows. The results are published in the July 22 print edition of the scientific journal Immunity.

The results raise hopes that the MKP-1 pathway will lead to new tools for shaping the immune response, said Hongbo Chi, Ph.D., assistant member of the St. Jude Department of Immunology and the study’s senior author. The co-first authors are Gonghua Huang, Ph.D., and Yanyan Wang, Ph.D., both postdoctoral fellows in Chi’s laboratory.

The findings provide new details about how dendritic cells regulate the fate of naïve or undifferentiated T cells. Dendritic cells are the sentinels of the innate immune response, patrolling the body and ready to respond at the first sign of infection.

Investigators were surprised that a single molecule regulated production of three out of the four major subsets of T cells, which each play different roles. MKP-1 is a negative regulator of the enzyme p38, which is part of the MAP kinase family of enzymes that control pathways involved in cell proliferation, differentiation and death.

Chi and his colleagues demonstrated that MKP-1 works in dendritic cells by altering production of protein messengers known as cytokines. Those cytokines determine which subset of specialized T cells the undifferentiated T cells are fated to become. In this study, scientists showed that MKP1 controls production of the cytokines that yield T helper 1 (Th1), T helper 17 (Th17) and regulatory T (Treg) cells. Th1 cells combat intracellular bacterial and viral infections. Th17 cells fight extracellular bacterial infections and fungi. Treg cells help with immune suppression, protecting against autoimmune diseases.

The study showed that suppression of p38 by MKP-1 promotes production of interleukin 12 (IL-12), which leads to an increase in Th1 cells. Rising IL-12 coincides with a drop in interleukin 6 (IL-6) and a corresponding dip in production of Th17. MKP-1 also inhibited the generation of Treg cells by down-regulating production of a third cytokine, TGF-beta.

Knocking out MKP-1 in mice disrupted production of IL-12 and IL-6 in dendritic cells as well as the anti-bacterial and anti-fungal immune response, researchers reported. MKP-1 deficiency also promoted T-cell driven inflammation in a mouse model of colitis, an inflammatory disease.

“MKP-1 is the first signaling molecule found in dendritic cells to program differentiation of these diverse T- cell subsets,” Chi said.

Previous work by other scientists focused on T cell differentiation in response to stimulation by cytokines. “This research fills a gap in our understanding of dendritic cell-mediated control of T-cell lineage choices,” Chi said. “T cells do not recognize pathogens directly, but dendritic cells do. T cells need dendritic cells to tell them what to do. In this study, we show that MKP-1 signaling in dendritic cells bridges the innate and adaptive immune responses by regulating cytokine production.”

Other authors are Lewis Shi and Thirumala-Devi Kanneganti, both of St. Jude.

The research was supported in part by the National Institutes of Health, the National Multiple Sclerosis Society, the Cancer Research Institute, The Hartwell Foundation and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked one of the best pediatric cancer hospitals in the country, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has treated children from all 50 states and from around the world, serving as a trusted resource for physicians and researchers. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital’s work would not be possible. For more information, go to

Summer Freeman | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>