Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signaling Molecule Identified as Essential for Maintaining a Balanced Immune Response

26.07.2011
St. Jude Children’s Research Hospital scientists show that the molecule serves as a bridge between the two arms of the immune system that provides a new mechanism guiding T cell differentiation

St. Jude Children’s Research Hospital investigators have identified a signaling molecule that functions like a factory supervisor to ensure that the right mix of specialized T cells is available to fight infections and guard against autoimmune disease.

The research also showed the molecule, phosphatase MKP-1, is an important regulator of immune balance. Working in laboratory cell lines and mice with specially engineered immune systems, scientists demonstrated that MKP-1 serves as a bridge between the innate immune response that is the body’s first line of defense against infection and the more specialized adaptive immune response that follows. The results are published in the July 22 print edition of the scientific journal Immunity.

The results raise hopes that the MKP-1 pathway will lead to new tools for shaping the immune response, said Hongbo Chi, Ph.D., assistant member of the St. Jude Department of Immunology and the study’s senior author. The co-first authors are Gonghua Huang, Ph.D., and Yanyan Wang, Ph.D., both postdoctoral fellows in Chi’s laboratory.

The findings provide new details about how dendritic cells regulate the fate of naïve or undifferentiated T cells. Dendritic cells are the sentinels of the innate immune response, patrolling the body and ready to respond at the first sign of infection.

Investigators were surprised that a single molecule regulated production of three out of the four major subsets of T cells, which each play different roles. MKP-1 is a negative regulator of the enzyme p38, which is part of the MAP kinase family of enzymes that control pathways involved in cell proliferation, differentiation and death.

Chi and his colleagues demonstrated that MKP-1 works in dendritic cells by altering production of protein messengers known as cytokines. Those cytokines determine which subset of specialized T cells the undifferentiated T cells are fated to become. In this study, scientists showed that MKP1 controls production of the cytokines that yield T helper 1 (Th1), T helper 17 (Th17) and regulatory T (Treg) cells. Th1 cells combat intracellular bacterial and viral infections. Th17 cells fight extracellular bacterial infections and fungi. Treg cells help with immune suppression, protecting against autoimmune diseases.

The study showed that suppression of p38 by MKP-1 promotes production of interleukin 12 (IL-12), which leads to an increase in Th1 cells. Rising IL-12 coincides with a drop in interleukin 6 (IL-6) and a corresponding dip in production of Th17. MKP-1 also inhibited the generation of Treg cells by down-regulating production of a third cytokine, TGF-beta.

Knocking out MKP-1 in mice disrupted production of IL-12 and IL-6 in dendritic cells as well as the anti-bacterial and anti-fungal immune response, researchers reported. MKP-1 deficiency also promoted T-cell driven inflammation in a mouse model of colitis, an inflammatory disease.

“MKP-1 is the first signaling molecule found in dendritic cells to program differentiation of these diverse T- cell subsets,” Chi said.

Previous work by other scientists focused on T cell differentiation in response to stimulation by cytokines. “This research fills a gap in our understanding of dendritic cell-mediated control of T-cell lineage choices,” Chi said. “T cells do not recognize pathogens directly, but dendritic cells do. T cells need dendritic cells to tell them what to do. In this study, we show that MKP-1 signaling in dendritic cells bridges the innate and adaptive immune responses by regulating cytokine production.”

Other authors are Lewis Shi and Thirumala-Devi Kanneganti, both of St. Jude.

The research was supported in part by the National Institutes of Health, the National Multiple Sclerosis Society, the Cancer Research Institute, The Hartwell Foundation and ALSAC.

St. Jude Children’s Research Hospital
St. Jude Children’s Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other catastrophic diseases. Ranked one of the best pediatric cancer hospitals in the country, St. Jude is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children. St. Jude has treated children from all 50 states and from around the world, serving as a trusted resource for physicians and researchers. St. Jude has developed research protocols that helped push overall survival rates for childhood cancer from less than 20 percent when the hospital opened to almost 80 percent today. St. Jude is the national coordinating center for the Pediatric Brain Tumor Consortium and the Childhood Cancer Survivor Study. In addition to pediatric cancer research, St. Jude is also a leader in sickle cell disease research and is a globally prominent research center for influenza.

Founded in 1962 by the late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world, publishing more research articles than any other pediatric cancer research center in the United States. St. Jude treats more than 5,700 patients each year and is the only pediatric cancer research center where families never pay for treatment not covered by insurance. St. Jude is financially supported by thousands of individual donors, organizations and corporations without which the hospital’s work would not be possible. For more information, go to www.stjude.org.

Summer Freeman | Newswise Science News
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>