Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Signal Molecules for the Formation of Various Cell Types Are Controlled

Researchers study influence of chemically produced variants of natural indirubin

The regulation of important signal molecules that are critical for the formation of various cell types can be influenced by a chemically produced variant of indirubin, a natural material used in traditional Chinese medicine. This was shown by scientists from Heidelberg University, Kaiserslautern and Jena.

The researchers were also able to demonstrate for the first time that these signal molecules in the cell – regulatory SMAD proteins – are not only controlled through regulation of their activation but also through the available quantity of signal molecules in the non-activated state. Because cellular differentiation as well as tumour growth are tied to these processes, the studies suggest a new approach for both the preparation of induced pluripotent stem cells and the development of tumour treatments. The results of the research were published in the journal “Chemistry & Biology”.

Cellular differentiation decides which functions can be assumed and carried out by cells in the body. Their precise regulation has a decisive influence on embryonic development and later also plays an essential role in maintaining the activity of organs. After toxic damage, among other things, it is important that cells can react appropriately to limit damage and regenerate the tissue. This requires close communication between the cells, which is controlled by numerous signal molecules. “Only when all the parts of a signal path are present, cells can react to the signals from the environment with a coordinated programme. If one of these components is missing, the proper cellular response is inhibited”, explains Prof. Dr. Stefan Wölfl from Heidelberg University's Institute of Pharmacy and Molecular Biotechnology.

How cellular differentiation is controlled during embryonic development and in the mature organism significantly depends on the family of TGFß/BMP growth factors. Representatives of these specific signal molecules also participate in the genesis and development of tumour diseases. Through their work, the researchers have demonstrated that the cells themselves influence how sensitively they react to growth factor signals. This occurs through the availability of the complementary signal mediators within the cell adapting to the given situation. The amount of available regulatory SMAD proteins (R-Smad proteins) in the cell is controlled on the level of synthesis, but in particular through the control of their degradation. This is performed by a special control system present in every cell. This ubiquitin proteasome system makes it possible for cellular proteins to be degraded in a controlled manner.
Earlier research already demonstrated that the degradation of activated R-Smad proteins occurs through the ubiquitin proteasome system, resulting in termination of the signals. “Our results now prove that the reservoir of non-activated R-SMAD signal mediators is also strictly controlled. This prevents corresponding external signals from activating an internal programme”, says Prof. Wölfl. “For example, if growing tumour cells are dependent on this signal, these cells could be kept from surviving and cell death may even occur if the signal mediators could be deliberately removed.” According to Prof. Wölfl, R-Smad proteins are also important mediators in cellular differentiation. “Reducing or removing these signal mediators from stem cells would cause them to no longer react to differentiation signals, so they would retain their stem cell properties as a result.”

In their experiments, the researchers worked with a variant of the natural product indirubin that they chemically synthesised. The studies showed that the indirubin derivative led to a degradation of the R-Smad proteins in human cells. Thus, the signals transmitted by the TGFß/BMP growth factors are blocked. In this procedure, the indirubin variant intervenes in various processes that all contribute to depleting the concentration of R-Smad proteins in the cell. In particular, the activity of specific regulating enzymes called ubiquitin proteases is diminished, which protect proteins from degradation in the ubiquitin proteasome system.

The research was funded by the Federal Ministry of Education and Research (BMBF) within a joint research project focussed on medical system biology. The research team at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University collaborated with scientists from the University of Kaiserslautern and the Jena University Hospital as well as the Heidelberg University Hospital’s Institute of Human Genetics.

Original publication:
X. Cheng, H. Alborzinia, K.H. Merz, H. Steinbeisser, R. Mrowka, C. Scholl, I. Kitanovic, G. Eisenbrand, S. Wölfl: Indirubin Derivatives Modulate TGFβ/BMP Signaling at Different Levels and Trigger Ubiquitin-Mediated Depletion of Nonactivated R-Smads, Chemistry & Biology, Volume 19, Issue 11, 21 November 2012, Pages 1423-1436, doi: 10.1016/j.chembiol.2012.09.008

Prof. Dr. Stefan Wölfl
Institute of Pharmacy and Molecular Biotechnology
Phone: +49 (0)6221 54-4878,

Communications and Marketing
Press Office, phone: +49 (0)6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

nachricht How a genetic locus protects adult blood-forming stem cells
26.11.2015 | Stowers Institute for Medical Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

How a genetic locus protects adult blood-forming stem cells

26.11.2015 | Life Sciences

Stanford technology makes metal wires on solar cells nearly invisible to light

26.11.2015 | Power and Electrical Engineering

Peering into cell structures where neurodiseases emerge

26.11.2015 | Life Sciences

More VideoLinks >>>