Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick animals limit disease transmission by isolating themselves from their peers

22.08.2016

Sick wild house mice spend time away from their social groups, leading to a decrease in their potential for disease transmission according to a new study by evolutionary biologists from the University of Zurich in collaboration with the ETH Zurich. The results can improve models focused on predicting the spread of infectious diseases like influenza or Ebola in humans.

When animals get sick, they may change their behaviour, becoming less active, for example. The study’s lead author, Patricia Lopes from the Department of Evolutionary Biology and Environmental Studies at the University of Zurich, says that previous research in wild animals has generally ignored how this change in behaviour may affect social contacts in a group and how, in turn, these changes can impact the transmission of a disease.


By removing themselves from the group sick mice limit disease spread.

Image: UZH

Sick mice are not avoided, but remove themselves from the group

To tackle this problem, Patricia Lopes and her colleagues used a novel combination of experimental manipulations of free-living mice, radio frequency tracking of animals, social network analysis and disease modelling.

To simulate an infection, mice were injected with lipopolysaccharides (a component of the bacterial cell wall), which results in an immune response and generalized disease symptoms. In a paper published this week in the journal Scientific Reports, the team reveals that sick mice become disconnected from their social groups.

It is known that mice have the ability to detect other sick mice. Therefore, it was surprising to find that the animals in the same social group did not avoid the sick mouse. In fact, they went on interacting with the sick mouse and other mice more or less in the same way as before the experimental infection. “It was the sick mouse that removed itself from the group”, emphasizes Lopes. She suggests that such a change in the behaviour of the sick mouse may protect relatives in the same group from catching the disease, which could be beneficial from an evolutionary perspective.

Speed and extent of disease spread are greatly reduced

In a further step, the researchers used mathematical models to predict how an infectious disease would spread considering the changes in behaviour of the sick animals. “When we account for the behavioural changes and how they affect social contacts, we find that the speed and the extent of disease spread are greatly reduced,” says Lopes.

Ultimately, the study contributes to our understanding of the complexity inherent to disease transmission and highlights the importance of changes in behaviour of sick animals for predicting the outcome of outbreaks. The findings extend to humans, as humans are also known to alter their behaviours when sick. Such effects are possible in a number of diseases spread by social contact where contagiousness overlaps with behavioural symptoms, including influenza and Ebola. Understanding why we feel sick and how diseases spread is a pressing issue, particularly given projected increases in disease outbreak driven by the synergy of climate change, habitat disturbance and human connectivity.

Literature:
Patricia C. Lopes, Per Block and Barbara König. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Scientific Reports. August 22, 2016. doi: 10.1038/srep31790

Contact:
Dr. Patricia C. Lopes
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +41 44 635 52 77
E-mail: patricia.lopes@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/sick-mice.html

Kurt Bodenmüller | Universität Zürich

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>