Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When siblings grow apart

01.03.2010
Characterization of changes acquired by gene pairs over time reveals principles underlying evolution of gene function

The genomes of higher organisms generally contain numerous genes originating from duplication events. In many cases, the resulting gene pairs maintain essentially parallel functions over the course of evolution, as demonstrated recently by Kousuke Hanada and colleagues from the RIKEN Plant Science Center in Yokohama.

Working with thale cress (Arabidopsis thaliana), the investigators found that evolution often tends to select for duplications that build redundancy into the genome, shielding organisms from potentially disastrous effects of function-altering mutations1. However, this doesn’t tell the full story about gene duplication.

“Knocking out either of two duplicate genes sometimes induces totally different phenotypes, indicating that the two copies have different functions,” says Hanada. This speaks to a process of ‘functionalization’, in which the two duplicate genes either evolve distinct functional profiles or else divide up the functions of the original, pre-duplication gene. Hanada and colleagues have now subjected A. thaliana to further analysis in order to better understand the molecular and evolutionary basis of this ‘morphological diversification’2.

Gene function can be altered either through changes to the encoded protein sequence or modifications to their expression behavior. The researchers began by assessing these characteristics in 398 gene pairs that had undergone functionalization relative to 94 pairs that had not, using sequence and expression data from the published literature and publicly available gene expression databases.

As expected, sequence and expression variability were both found to be significantly higher within gene pairs that had undergone some degree of functionalization. However, there was also a striking difference in the relative contribution of these factors to morphological diversification. “Our analysis suggested that changes [in] expression pattern play the minor role—between 33 and 41%—and that changes [in] protein sequence play the major role—between 59 and 67%,” says Hanada. “This result is most surprising; most people believed that changes in expression pattern play the major role because such changes are essential for development.”

The investigators are now keen to apply their classification strategy to other organisms, including the fruit fly and mouse, in an effort to determine whether similar evolutionary patterns exist. “I expect that changes of expression pattern are more important in complex organisms than simple organisms, but I do not know the real answer yet,” says Hanada. Collectively, the resulting data could inform development of tools that enable scientists to better understand the evolution of gene function based on observed sequence and expression changes.

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center

1. Hanada, K., Kuromori, T., Myouga, F., Toyoda, T., Li, W.-H. & Shinozaki, K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biology and Evolution 409, 409–414 (2009).

2. Hanada, K., Kuromori, T., Myouga, F., Toyoda, T. & Shinozaki, K. Increased expression and protein divergence in duplicate genes is associated with morphological diversification. PLoS Genetics 5, e1000781 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6189
http://www.researchsea.com

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>