Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When siblings grow apart

Characterization of changes acquired by gene pairs over time reveals principles underlying evolution of gene function

The genomes of higher organisms generally contain numerous genes originating from duplication events. In many cases, the resulting gene pairs maintain essentially parallel functions over the course of evolution, as demonstrated recently by Kousuke Hanada and colleagues from the RIKEN Plant Science Center in Yokohama.

Working with thale cress (Arabidopsis thaliana), the investigators found that evolution often tends to select for duplications that build redundancy into the genome, shielding organisms from potentially disastrous effects of function-altering mutations1. However, this doesn’t tell the full story about gene duplication.

“Knocking out either of two duplicate genes sometimes induces totally different phenotypes, indicating that the two copies have different functions,” says Hanada. This speaks to a process of ‘functionalization’, in which the two duplicate genes either evolve distinct functional profiles or else divide up the functions of the original, pre-duplication gene. Hanada and colleagues have now subjected A. thaliana to further analysis in order to better understand the molecular and evolutionary basis of this ‘morphological diversification’2.

Gene function can be altered either through changes to the encoded protein sequence or modifications to their expression behavior. The researchers began by assessing these characteristics in 398 gene pairs that had undergone functionalization relative to 94 pairs that had not, using sequence and expression data from the published literature and publicly available gene expression databases.

As expected, sequence and expression variability were both found to be significantly higher within gene pairs that had undergone some degree of functionalization. However, there was also a striking difference in the relative contribution of these factors to morphological diversification. “Our analysis suggested that changes [in] expression pattern play the minor role—between 33 and 41%—and that changes [in] protein sequence play the major role—between 59 and 67%,” says Hanada. “This result is most surprising; most people believed that changes in expression pattern play the major role because such changes are essential for development.”

The investigators are now keen to apply their classification strategy to other organisms, including the fruit fly and mouse, in an effort to determine whether similar evolutionary patterns exist. “I expect that changes of expression pattern are more important in complex organisms than simple organisms, but I do not know the real answer yet,” says Hanada. Collectively, the resulting data could inform development of tools that enable scientists to better understand the evolution of gene function based on observed sequence and expression changes.

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center

1. Hanada, K., Kuromori, T., Myouga, F., Toyoda, T., Li, W.-H. & Shinozaki, K. Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biology and Evolution 409, 409–414 (2009).

2. Hanada, K., Kuromori, T., Myouga, F., Toyoda, T. & Shinozaki, K. Increased expression and protein divergence in duplicate genes is associated with morphological diversification. PLoS Genetics 5, e1000781 (2009)

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>