Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrub growth decreases as winter temps warm up

21.05.2014

Many have assumed that warmer winters as a result of climate change would increase the growth of trees and shrubs because the growing season would be longer. But shrubs achieve less yearly growth when cold winter temperatures are interrupted by temperatures warm enough to trigger growth.

“When winter temperatures fluctuate between being cold and warm enough for growth, plants deplete their resources trying to photosynthesize and end the winter with fewer reserves than they initially had. In the summer they have to play catch up,” said Melanie Harsch, a University of Washington postdoctoral researcher in biology and applied mathematics. She is lead author of a paper on the subject recently published in PLOS One.


Photo by Janet Wilmshurst

Dracophyllum on Campbell Island, New Zealand.


Photo by David Hollander

Discs cut from just above the shrubs’ root collar were studied to determine growth.

The roots are especially sensitive to temperature fluctuations, Harsch said. Warming winters result in higher root respiration, which uses up carbon reserves as plants make and release oxygen, leading to less carbon available during the regular growing season.

Harsch and her colleagues studied two species of shrubs on Campbell Island, an uninhabited UNESCO World Heritage site in the southwest Pacific Ocean about 375 miles south of New Zealand’s mainland. They studied two large shrubs, Dracophyllum longifolium and Dracophyllum scoparium, which are evergreen broadleaf species that can grow up to about 15 feet tall and live up to 240 years.

Researchers found that while warmer, drier winters helped seedlings get established, it adversely affected growth of older plants.

“For growth to occur you need sufficient precipitation and temperature and nutrients. Growth should only happen during the summer on Campbell Island when temperatures are above 5 degrees Celsius,” Harsch said. Five degrees C is about 40 F. “On Campbell Island most winters are cool and below this 5 degrees Celsius, so the plants are not active. The plants we studied are evergreen and there is little snow cover, so they are sensitive to changes in temperature.”

In this study, researchers cut out discs, called “cookies,” from just above the shrubs’ root collar, and measured the width between each ring to determine growth. They found that plant growth decreased as winter temperatures went up.

“On Campbell Island the snow is ephemeral, so the plants usually are not covered,” Harsch said. “If we’re going to see an effect in changing winter conditions, we’re going to see it at Campbell Island decades before we see it at, say, Mt. Rainier, where there is a lot of snow and winters are colder.”

Harsch said plants in areas like Campbell Island may eventually adjust to warmer winters, but the transition period will be tough as temperatures bounce above and below what plants need to stay dormant, causing the plants to draw down their resources.

“It may eventually be warm enough in the winters so that plants can photosynthesize and grow year round, like they do in the tropics,” she said. “It’s this transition part that plants are not adapted for.”

Harsch plans to do a follow-up study that would measure the microbes and carbon reserves in the soil, and manipulate snow packs to see how it affects establishment and growth.

“How much of this can our tree species withstand?” Harsch said. “Will summer growth eventually compensate for these hard winters, or is this some sort of extra stressor on trees that will be one more nail in the coffin? If you think of all the different factors of increasing vulnerability in climate change, is this really significant? We just don’t know.”

Co-authors are Matt McGlone and Janet Wilmshurst at Landcare Research in New Zealand. Harsch started the work while pursuing her doctorate at Lincoln University in New Zealand and finished the analysis at the UW. The work was supported in part by the National Science Foundation.

# # #

For more information, contact Harsch at harsch.melanie@gmail.com or 253-365-1555.

NSF grant: DEB-1103734.

Doree Armstrong | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/05/20/shrub-growth-decreases-as-winter-temperatures-fluctuate-up/

Further reports about: Heritage Ocean Pacific Zealand species temperature transition

More articles from Life Sciences:

nachricht Why do animals fight members of other species?
24.04.2015 | University of California - Los Angeles

nachricht Is a small artificially composed virus fragment the key to a Chikungunya vaccine?
24.04.2015 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>