Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shrub growth decreases as winter temps warm up

21.05.2014

Many have assumed that warmer winters as a result of climate change would increase the growth of trees and shrubs because the growing season would be longer. But shrubs achieve less yearly growth when cold winter temperatures are interrupted by temperatures warm enough to trigger growth.

“When winter temperatures fluctuate between being cold and warm enough for growth, plants deplete their resources trying to photosynthesize and end the winter with fewer reserves than they initially had. In the summer they have to play catch up,” said Melanie Harsch, a University of Washington postdoctoral researcher in biology and applied mathematics. She is lead author of a paper on the subject recently published in PLOS One.


Photo by Janet Wilmshurst

Dracophyllum on Campbell Island, New Zealand.


Photo by David Hollander

Discs cut from just above the shrubs’ root collar were studied to determine growth.

The roots are especially sensitive to temperature fluctuations, Harsch said. Warming winters result in higher root respiration, which uses up carbon reserves as plants make and release oxygen, leading to less carbon available during the regular growing season.

Harsch and her colleagues studied two species of shrubs on Campbell Island, an uninhabited UNESCO World Heritage site in the southwest Pacific Ocean about 375 miles south of New Zealand’s mainland. They studied two large shrubs, Dracophyllum longifolium and Dracophyllum scoparium, which are evergreen broadleaf species that can grow up to about 15 feet tall and live up to 240 years.

Researchers found that while warmer, drier winters helped seedlings get established, it adversely affected growth of older plants.

“For growth to occur you need sufficient precipitation and temperature and nutrients. Growth should only happen during the summer on Campbell Island when temperatures are above 5 degrees Celsius,” Harsch said. Five degrees C is about 40 F. “On Campbell Island most winters are cool and below this 5 degrees Celsius, so the plants are not active. The plants we studied are evergreen and there is little snow cover, so they are sensitive to changes in temperature.”

In this study, researchers cut out discs, called “cookies,” from just above the shrubs’ root collar, and measured the width between each ring to determine growth. They found that plant growth decreased as winter temperatures went up.

“On Campbell Island the snow is ephemeral, so the plants usually are not covered,” Harsch said. “If we’re going to see an effect in changing winter conditions, we’re going to see it at Campbell Island decades before we see it at, say, Mt. Rainier, where there is a lot of snow and winters are colder.”

Harsch said plants in areas like Campbell Island may eventually adjust to warmer winters, but the transition period will be tough as temperatures bounce above and below what plants need to stay dormant, causing the plants to draw down their resources.

“It may eventually be warm enough in the winters so that plants can photosynthesize and grow year round, like they do in the tropics,” she said. “It’s this transition part that plants are not adapted for.”

Harsch plans to do a follow-up study that would measure the microbes and carbon reserves in the soil, and manipulate snow packs to see how it affects establishment and growth.

“How much of this can our tree species withstand?” Harsch said. “Will summer growth eventually compensate for these hard winters, or is this some sort of extra stressor on trees that will be one more nail in the coffin? If you think of all the different factors of increasing vulnerability in climate change, is this really significant? We just don’t know.”

Co-authors are Matt McGlone and Janet Wilmshurst at Landcare Research in New Zealand. Harsch started the work while pursuing her doctorate at Lincoln University in New Zealand and finished the analysis at the UW. The work was supported in part by the National Science Foundation.

# # #

For more information, contact Harsch at harsch.melanie@gmail.com or 253-365-1555.

NSF grant: DEB-1103734.

Doree Armstrong | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/05/20/shrub-growth-decreases-as-winter-temperatures-fluctuate-up/

Further reports about: Heritage Ocean Pacific Zealand species temperature transition

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>