Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortening guide RNA markedly improves specificity of CRISPR-Cas nucleases

27.01.2014
A simple adjustment to a powerful gene-editing tool may be able to improve its specificity.

In a report receiving advance online publication in Nature Biotechnology, Massachusetts General Hospital (MGH) investigators describe how adjusting the length of the the guide RNA (gRNA) component of the synthetic enzymes called CRISPR-Cas RNA-guided nucleases (RGNs) can substantially reduce the occurrence of DNA mutations at sites other than the intended target, a limitation the team had previously described just last year.

"Simply by shortening the length of the gRNA targeting region, we saw reductions in the frequencies of unwanted mutations at all of the previously known off-target sites we examined," says J. Keith Joung, MD, PhD, associate chief for Research in the MGH Department of Pathology and senior author of the report. "Some sites showed decreases in mutation frequency of 5,000-fold or more, compared with full length gRNAs, and importantly these truncated gRNAs - which we call tru-gRNAs - are just as efficient as full-length gRNAs at reaching their intended target DNA segments."

CRISPR-Cas RGNs combine a gene-cutting enzyme called Cas9 with a short RNA segment and are used to induce breaks in a complementary DNA segment in order to introduce genetic changes. Last year Joung's team reported finding that, in human cells, CRISPR-Cas RGNs could also cause mutations in DNA sequences with differences of up to five nucleotides from the target, which could seriously limit the proteins' clinical usefulness. The team followed up those findings by investigating a hypothesis that could seem counterintuitive, that shortening the gRNA segment might reduce off-target mutations.

"Some of our experiments from last year suggested that one could mismatch a few nucleotides at one end of the gRNA complementarity region without affecting the targeting activity," Joung explains. "That led us to wonder whether removing these nucleotides could make the system more sensitive to mismatches in the remaining sequence."

Based on a natural system a species of bacteria uses against other pathogens, the CRISPR-Cas RGNs most widely used by researchers includes a 20-nucleotide targeting region within the gRNA. To test their theory, the MGH team constructed RGNs with progressively shorter gRNAs and found that, while gRNAs with targeting segments of 17 or 18 nucleotides were as or more efficient than full-length gRNAs in reaching their targets, those with 15- or 16-nucleotide targeting segments had reduced or no targeting activity. Subsequent experiments found that 17-nucleotide truncated RGNs efficiently induced the desired mutations in human cells with greatly reduced or undetectable off-target effects, even at sites with only one or two mismatches.

"While we don't fully understand the mechanism by which tru-gRNAs reduce off-target effects, our hypothesis is that the original system might have more energy than it needs, enabling it to cleave even imperfectly matched sites," says Joung, who is an associate professor of Pathology at Harvard Medical School. "By shortening the gRNA, we may reduce the energy to a level just sufficient for on-target activity, making the nuclease less able to cleave off-target sites. But more work is needed to define exactly why tru-gRNAs have reduced off-target effects."

Joung's team has incorporated the capability to find tru-gRNA target sites into ZiFiT Targeter, a freely available software package designed to identify potential target sites for several DNA-editing technologies. ZiFiT is available at http://zifit.partners.org.

Co-lead authors of the Nature Biotechnology report are Yanfang Fu, PhD, and Jeffry Sander, PhD, of the MGH Molecular Pathology Unit. Additional co-authors are Deepak Reyon, PhD, and Vincent Cascio, also of MGH Molecular Pathology. The study was supported by National Institutes of Health Director's Pioneer Award DP1 GM105378, NIH grants R01 GM088040 and P50 HG005550, and the Jim and Ann Orr MGH Research Scholar Award.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://zifit.partners.org

More articles from Life Sciences:

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Perfect imperfection
03.05.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Quantum Logical Operations Realized with Single Photons

03.05.2016 | Physics and Astronomy

Discovery of a fundamental limit to the evolution of the genetic code

03.05.2016 | Life Sciences

Cavitation aggressive intensity greatly enhanced using pressure at bubble collapse region

03.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>