Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shortening guide RNA markedly improves specificity of CRISPR-Cas nucleases

27.01.2014
A simple adjustment to a powerful gene-editing tool may be able to improve its specificity.

In a report receiving advance online publication in Nature Biotechnology, Massachusetts General Hospital (MGH) investigators describe how adjusting the length of the the guide RNA (gRNA) component of the synthetic enzymes called CRISPR-Cas RNA-guided nucleases (RGNs) can substantially reduce the occurrence of DNA mutations at sites other than the intended target, a limitation the team had previously described just last year.

"Simply by shortening the length of the gRNA targeting region, we saw reductions in the frequencies of unwanted mutations at all of the previously known off-target sites we examined," says J. Keith Joung, MD, PhD, associate chief for Research in the MGH Department of Pathology and senior author of the report. "Some sites showed decreases in mutation frequency of 5,000-fold or more, compared with full length gRNAs, and importantly these truncated gRNAs - which we call tru-gRNAs - are just as efficient as full-length gRNAs at reaching their intended target DNA segments."

CRISPR-Cas RGNs combine a gene-cutting enzyme called Cas9 with a short RNA segment and are used to induce breaks in a complementary DNA segment in order to introduce genetic changes. Last year Joung's team reported finding that, in human cells, CRISPR-Cas RGNs could also cause mutations in DNA sequences with differences of up to five nucleotides from the target, which could seriously limit the proteins' clinical usefulness. The team followed up those findings by investigating a hypothesis that could seem counterintuitive, that shortening the gRNA segment might reduce off-target mutations.

"Some of our experiments from last year suggested that one could mismatch a few nucleotides at one end of the gRNA complementarity region without affecting the targeting activity," Joung explains. "That led us to wonder whether removing these nucleotides could make the system more sensitive to mismatches in the remaining sequence."

Based on a natural system a species of bacteria uses against other pathogens, the CRISPR-Cas RGNs most widely used by researchers includes a 20-nucleotide targeting region within the gRNA. To test their theory, the MGH team constructed RGNs with progressively shorter gRNAs and found that, while gRNAs with targeting segments of 17 or 18 nucleotides were as or more efficient than full-length gRNAs in reaching their targets, those with 15- or 16-nucleotide targeting segments had reduced or no targeting activity. Subsequent experiments found that 17-nucleotide truncated RGNs efficiently induced the desired mutations in human cells with greatly reduced or undetectable off-target effects, even at sites with only one or two mismatches.

"While we don't fully understand the mechanism by which tru-gRNAs reduce off-target effects, our hypothesis is that the original system might have more energy than it needs, enabling it to cleave even imperfectly matched sites," says Joung, who is an associate professor of Pathology at Harvard Medical School. "By shortening the gRNA, we may reduce the energy to a level just sufficient for on-target activity, making the nuclease less able to cleave off-target sites. But more work is needed to define exactly why tru-gRNAs have reduced off-target effects."

Joung's team has incorporated the capability to find tru-gRNA target sites into ZiFiT Targeter, a freely available software package designed to identify potential target sites for several DNA-editing technologies. ZiFiT is available at http://zifit.partners.org.

Co-lead authors of the Nature Biotechnology report are Yanfang Fu, PhD, and Jeffry Sander, PhD, of the MGH Molecular Pathology Unit. Additional co-authors are Deepak Reyon, PhD, and Vincent Cascio, also of MGH Molecular Pathology. The study was supported by National Institutes of Health Director's Pioneer Award DP1 GM105378, NIH grants R01 GM088040 and P50 HG005550, and the Jim and Ann Orr MGH Research Scholar Award.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $775 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://zifit.partners.org

More articles from Life Sciences:

nachricht Aromatic couple makes new chemical bonds
30.06.2015 | Institute of Transformative Bio-Molecules (ITbM), Nagoya University

nachricht Breaking through a double wall with a sledgehammer
29.06.2015 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

3D Plasmonic Antenna Capable of Focusing Light into Few Nanometers

30.06.2015 | Physics and Astronomy

X-rays and electrons join forces to map catalytic reactions in real-time

30.06.2015 | Physics and Astronomy

A polarizing view

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>