Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New shortcut to cell growth

09.06.2010
Harvard and University of Montreal researchers challenge views on how cells respond to stimuli

People have them, cats have them and whales have some, too. Neurons, those interlinked nerve cells that carry sensations including pain, stretch from our spinal cords to the tips of our toes, paws or fins.

According to a new study published in the journal Cell, scientists from the Harvard Medical School, the University of Montreal and the Dana-Farber Cancer Institute have found a new way by which nerve cells relay information that tell them to grow from millimeters to meters in length.

In other words, the researchers found a new signaling pathway that charters the course for cell progression to allow their growth. The team made an intriguing connection between nerve cells and a receptor called DCC (Deleted in Colorectal Carcinoma). The discovery means cells perform functions in unimagined ways – challenging previous views on how cells respond to their environment – that could prove beneficial in cell growth following nerve damage or detrimental in diseases such as cancer.

"We found an alternate way that helps nerve cells respond quickly and locally," says co-author Philippe P. Roux, a professor of pathology and cell biology and a researcher at the University of Montreal Institute for Research in Immunology and Cancer (IRIC). "This is just the beginning, since our findings suggest that more cellular receptors may function in the same way."

Dr. Roux, who is also Canada Research Chair in Signal Transduction and Proteomics, says the study could potentially open new treatment avenues: "We can envisage manipulating this alternate mechanism to make cells respond locally to their environment. Our findings mean that scientists must consider a new way that cells organize themselves to perform essential functions."

Partners in research:

This study was supported by the National Institutes of Health, Canadian Cancer Society Research Institute, Howard Hughes Medical Institute, Canadian Institutes of Health Research and Human Frontier Science Program Organization.

About the study:

The article, "Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation," published in the journal Cell, was authored by Joseph Tcherkezian, Perry A. Brittis and John G. Flanagan of the Harvard Medical School; Franziska Thomas of the Dana-Farber Cancer Institute; Philippe P. Roux of the University of Montreal.

Note to editors:

The Université de Montréal name can be adapted to University of Montreal (never Montreal University).

On the Web:

Cell: www.cell.com
Université de Montréal: www.umontreal.ca/english
Department of Pathology and Cell Biology: www.patho.umontreal.ca
Institute for Research in Immunology and Cancer: www.iric.ca
Harvard Medical School: www.hms.harvard.edu
Dana-Farber Cancer Institute: www.dana-farber.org

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>