Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New shortcut to cell growth

09.06.2010
Harvard and University of Montreal researchers challenge views on how cells respond to stimuli

People have them, cats have them and whales have some, too. Neurons, those interlinked nerve cells that carry sensations including pain, stretch from our spinal cords to the tips of our toes, paws or fins.

According to a new study published in the journal Cell, scientists from the Harvard Medical School, the University of Montreal and the Dana-Farber Cancer Institute have found a new way by which nerve cells relay information that tell them to grow from millimeters to meters in length.

In other words, the researchers found a new signaling pathway that charters the course for cell progression to allow their growth. The team made an intriguing connection between nerve cells and a receptor called DCC (Deleted in Colorectal Carcinoma). The discovery means cells perform functions in unimagined ways – challenging previous views on how cells respond to their environment – that could prove beneficial in cell growth following nerve damage or detrimental in diseases such as cancer.

"We found an alternate way that helps nerve cells respond quickly and locally," says co-author Philippe P. Roux, a professor of pathology and cell biology and a researcher at the University of Montreal Institute for Research in Immunology and Cancer (IRIC). "This is just the beginning, since our findings suggest that more cellular receptors may function in the same way."

Dr. Roux, who is also Canada Research Chair in Signal Transduction and Proteomics, says the study could potentially open new treatment avenues: "We can envisage manipulating this alternate mechanism to make cells respond locally to their environment. Our findings mean that scientists must consider a new way that cells organize themselves to perform essential functions."

Partners in research:

This study was supported by the National Institutes of Health, Canadian Cancer Society Research Institute, Howard Hughes Medical Institute, Canadian Institutes of Health Research and Human Frontier Science Program Organization.

About the study:

The article, "Transmembrane Receptor DCC Associates with Protein Synthesis Machinery and Regulates Translation," published in the journal Cell, was authored by Joseph Tcherkezian, Perry A. Brittis and John G. Flanagan of the Harvard Medical School; Franziska Thomas of the Dana-Farber Cancer Institute; Philippe P. Roux of the University of Montreal.

Note to editors:

The Université de Montréal name can be adapted to University of Montreal (never Montreal University).

On the Web:

Cell: www.cell.com
Université de Montréal: www.umontreal.ca/english
Department of Pathology and Cell Biology: www.patho.umontreal.ca
Institute for Research in Immunology and Cancer: www.iric.ca
Harvard Medical School: www.hms.harvard.edu
Dana-Farber Cancer Institute: www.dana-farber.org

Sylvain-Jacques Desjardins | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>