Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Short-Term Gene-Expression "Memory" is Inherited in Proteins Associated with DNA, New Research Finds

07.08.2013
By studying a gene in yeast, a team of scientists has found that modifications to histones -- proteins associated with DNA -- can control whether or not a gene is allowed to function and may be important in maintaining the genes' "expression potential" so that future cells behave as their parent cells did.

The research was led by Lu Bai, an assistant professor of biochemistry, molecular biology, and physics at Penn State University, in collaboration with David Stillman at the University of Utah. The discovery, which may have implications for the study of diseases such as cancer, will be published in a print edition of the journal Proceedings of the National Academy of Sciences.


Three fluorescent images of yeast cells as they grow from two single cells (left) to a small cell cluster (right). The green color represents the expression of the HO gene. The red color at the bud neck is a marker for cell cycle.

Credit: Bai lab, Penn State University

Bai explained that gene expression -- the process by which certain genes are regulated or turned "on" or "off" -- is one of the most fundamental processes in the life of any biological cell. Different programs of gene expression -- even when cells have the same DNA -- can lead to different cellular behavior and function. For example, even though a human muscle cell and a human nerve cell have identical DNA, they behave and function very differently.

Misregulation of gene expression can affect cell fitness and lead to diseases. "Gene expression tends to vary from cell to cell," Bai said. "Misregulation may happen in a small fraction of cells, and these cells may cause disease later on. Therefore it is important to study gene regulation at the single-cell level."

Using a fluorescent video of cell division, Bai and her team were able to observe how a gene called HO was expressed in single yeast cells over multiple cell divisions. Normally, the expression of HO allows budding yeast to change sex -- from "male" to "female" and vice versa. "Interestingly, HO expression -- and thus sex change -- is supposed to occur only in 'mother' cells but not the newly budded 'daughter' cells," Bai explained.

After observing the video, team members found that HO was expressed in 98 percent of the mother cells but also in 3 percent of the daughter cells. "The vast majority of both the mother cells and the daughter cells responded as they were supposed to," Bai said. "But, in a small percentage of the cells, the gene regulation went wrong."

The pressing question for Bai's team then was, why did the HO gene regulation fail in a small population of cells -- in 2 percent of the mother cells and 3 percent of the daughter cells? She discovered that the answer seems to lie in histones, a major protein complex associated with DNA. "We found that changes in histone configurations affect the fraction of cells in which the HO expression was misregulated.

In addition, we found that, in some conditions, the HO expression can 'remember' itself: If HO is turned on in one cell, it is more likely to be turned on in its progeny cells. We showed that this short-term memory of the HO expression seems to be inherited through histone modifications," Bai said. She added that further study of gene expression, specifically at the level of individual cells, can have important implications for disease research.

In addition to Bai and Stillman, other researchers who contributed to this study include Qian Zhang, Youngdae Yoona, Juan Antonio Raygoza Garay, and Michael M. Mwangi from Penn State; Yaxin Yu and Emily J. Parnell from the University of Utah; and Frederick R. Cross from the Rockefeller University.

The research was funded by the National Institutes of Health.

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>