Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shine a Light Instead of Changing the Battery

01.12.2011
Light-driven implantable converter for bioelectronics devices

Pacemakers and other implanted medical devices require electric current to operate. Changing the battery requires an additional operation, which is an added stress on the patient. A Japanese team led by Eijiro Miyako at the National Institute of Advanced Industrial Science and Technology has now introduced an alternative approach in the journal Angewandte Chemie: an implantable converter that can simply be irradiated with laser light through the skin.

Bioelectronic devices help many patients to live longer and to experience a better quality of life. Pacemakers are not the only electronic implants used today; there are also “pain pacemakers” that alleviate severe chronic pain. These are neurostimulators that send electrical impulses directly to the spinal cord to block the signal pathway that transmits pain to the brain. Another example is the implantable drug pump, which can direct painkillers near the spinal cord or provide insulin for diabetics.

Such electronic implants are usually powered by lithium batteries that last at most ten years. The battery must then be changed in another operation. A rechargeable version is thus desirable. Various alternatives are currently available, such as electric cells that are driven by glucose within the body, or muscle-driven dynamos. The disadvantage is that the production of current cannot be controlled. Other approaches operate through electromagnetic current generation, but this can disrupt electronic devices in the vicinity.

The Japanese team has now developed an interesting alternative, a device that delivers current upon irradiation with a laser. At the heart of the system are very finely divided carbon nanotubes embedded in a silicon matrix. These absorb laser light and convert the light energy very effectively to heat. This heat energy is in turn converted into electric current by the tiny device. This works through the Seebeck effect: in an electrical circuit made of two different conductors—in this case a special arrangement of semiconductor materials—a temperature difference between the contacts results in a small voltage.

Only the side of the device coated with the silicon/carbon nanotube composite that gets irradiated heats up, which provides the required temperature difference. Because the carbon nanotubes absorb very well in a range of wavelengths that can pass through tissue, the device, which need be no larger than a half-centimeter cube, can be implanted under the skin. Simple irradiation should then allow it to generate enough voltage to charge the battery of a pacemaker or other device.

The researchers are now working on making the energy conversion of the device even more efficient and to increase its safety for medical applications.

About the Author
Dr Eijiro Miyako is a researcher of the Health Research Institute (HRI) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. His main specialty is nanocarbon technology, and his research focuses on the development of highly functional nanocarbons for biotechnology and medical science.
Author: Eijiro Miyako, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan), mailto:e-miyako@aist.go.jp
Title: A Photo-Thermal-Electrical Converter Based On Carbon Nanotubes for Bioelectronic Applications

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201106136

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>