Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shine a Light Instead of Changing the Battery

01.12.2011
Light-driven implantable converter for bioelectronics devices

Pacemakers and other implanted medical devices require electric current to operate. Changing the battery requires an additional operation, which is an added stress on the patient. A Japanese team led by Eijiro Miyako at the National Institute of Advanced Industrial Science and Technology has now introduced an alternative approach in the journal Angewandte Chemie: an implantable converter that can simply be irradiated with laser light through the skin.

Bioelectronic devices help many patients to live longer and to experience a better quality of life. Pacemakers are not the only electronic implants used today; there are also “pain pacemakers” that alleviate severe chronic pain. These are neurostimulators that send electrical impulses directly to the spinal cord to block the signal pathway that transmits pain to the brain. Another example is the implantable drug pump, which can direct painkillers near the spinal cord or provide insulin for diabetics.

Such electronic implants are usually powered by lithium batteries that last at most ten years. The battery must then be changed in another operation. A rechargeable version is thus desirable. Various alternatives are currently available, such as electric cells that are driven by glucose within the body, or muscle-driven dynamos. The disadvantage is that the production of current cannot be controlled. Other approaches operate through electromagnetic current generation, but this can disrupt electronic devices in the vicinity.

The Japanese team has now developed an interesting alternative, a device that delivers current upon irradiation with a laser. At the heart of the system are very finely divided carbon nanotubes embedded in a silicon matrix. These absorb laser light and convert the light energy very effectively to heat. This heat energy is in turn converted into electric current by the tiny device. This works through the Seebeck effect: in an electrical circuit made of two different conductors—in this case a special arrangement of semiconductor materials—a temperature difference between the contacts results in a small voltage.

Only the side of the device coated with the silicon/carbon nanotube composite that gets irradiated heats up, which provides the required temperature difference. Because the carbon nanotubes absorb very well in a range of wavelengths that can pass through tissue, the device, which need be no larger than a half-centimeter cube, can be implanted under the skin. Simple irradiation should then allow it to generate enough voltage to charge the battery of a pacemaker or other device.

The researchers are now working on making the energy conversion of the device even more efficient and to increase its safety for medical applications.

About the Author
Dr Eijiro Miyako is a researcher of the Health Research Institute (HRI) at the National Institute of Advanced Industrial Science and Technology (AIST), Japan. His main specialty is nanocarbon technology, and his research focuses on the development of highly functional nanocarbons for biotechnology and medical science.
Author: Eijiro Miyako, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan), mailto:e-miyako@aist.go.jp
Title: A Photo-Thermal-Electrical Converter Based On Carbon Nanotubes for Bioelectronic Applications

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201106136

| Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>