Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shifts in Physiological Mechanisms Let Male Bats Balance the Need to Feed and the Urge to Breed

16.04.2013
A forthcoming article in Physiological and Biochemical Zoology reveals shifts in the mechanisms bats use to regulate metabolism throughout their seasonal activity period.

As small and active flying mammals, bats have very high mass-specific energy requirements and as such continually adjust their rates of activity and metabolism in response to ambient temperature and other seasonal variation.


Bats must carefully balance physiological mechanisms in response to variation in factors such as ambient temperature, availability of food, and mating requirements. Myotis daubentonii funnels a prey insect with the aid of the wing into the tail pouch to eat it during flight.
Photo credit: Marko König (Mammalian Ecology Group, JLU Giessen)

In particular, during the autumn mating season, male bats must carefully balance time spent foraging (to gain enough fat to last the winter hibernation) with time spent finding a mate. Because both activities require significant effort, how do male bats do it? In an upcoming issue of Physiological and Biochemical Zoology, Nina Becker and colleagues reveal that the answer lies in the bats’ resting metabolic rate.

In their study, the group monitored the thermoregulation, energy intake, activity, and metabolism of free-ranging Daubenton’s bats Myotis daubentonii during this insectivorous species’ main activity period of the year (mid-April to mid-October).

Becker et al. found that during spring, when ambient temperatures are low, prey is scarce, and the male bats are reproductively inactive, M. daubentonii used daily torpor (decreased body temperature) to balance their energy budgets.

In summer, when temperatures and abundance of insects increase, bats shift their behavior away from long and frequent bouts of torpor and toward more intake of food. In males it is predicted that this increase in feeding is done in anticipation of the impending mating season, when energy requirements are high but low insect abundance and significant time spent finding a mate (and therefore not foraging) mean that food intake will be at its lowest during the animals’ entire period of activity.

In autumn, for male M. daubentonii to accommodate the high energy demands of reproduction and low energy intake and also sufficiently prepare for hibernation, Becker and colleagues report that the bats do not increase torpor, as they do in spring, but instead employ metabolic compensation to reduce resting metabolic rate. In this way, energy expenditures are reduced and thus the low amount of food the bats consume is enough for them to survive the winter. The exact mechanism allowing this reduction in resting metabolic rate is still in question, but the authors speculate it is likely due to a decrease in activity of either the digestive system or the brain.

Becker, Nina I., Marco Tschapka, Elisabeth K. V. Kalko, and Jorge A. Encarnação. “Balancing the Energy Budget in Free-Ranging Male Myotis daubentonii Bats.” Physiological and Biochemical Zoology 86:3 (May/June 2013).

Physiological and Biochemical Zoology (http://journals.uchicago.edu/PBZ) publishes original research in animal physiology and biochemistry, with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary, or comparative physiology is particularly encouraged.

Emily Murphy | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>