Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shifts in Physiological Mechanisms Let Male Bats Balance the Need to Feed and the Urge to Breed

16.04.2013
A forthcoming article in Physiological and Biochemical Zoology reveals shifts in the mechanisms bats use to regulate metabolism throughout their seasonal activity period.

As small and active flying mammals, bats have very high mass-specific energy requirements and as such continually adjust their rates of activity and metabolism in response to ambient temperature and other seasonal variation.


Bats must carefully balance physiological mechanisms in response to variation in factors such as ambient temperature, availability of food, and mating requirements. Myotis daubentonii funnels a prey insect with the aid of the wing into the tail pouch to eat it during flight.
Photo credit: Marko König (Mammalian Ecology Group, JLU Giessen)

In particular, during the autumn mating season, male bats must carefully balance time spent foraging (to gain enough fat to last the winter hibernation) with time spent finding a mate. Because both activities require significant effort, how do male bats do it? In an upcoming issue of Physiological and Biochemical Zoology, Nina Becker and colleagues reveal that the answer lies in the bats’ resting metabolic rate.

In their study, the group monitored the thermoregulation, energy intake, activity, and metabolism of free-ranging Daubenton’s bats Myotis daubentonii during this insectivorous species’ main activity period of the year (mid-April to mid-October).

Becker et al. found that during spring, when ambient temperatures are low, prey is scarce, and the male bats are reproductively inactive, M. daubentonii used daily torpor (decreased body temperature) to balance their energy budgets.

In summer, when temperatures and abundance of insects increase, bats shift their behavior away from long and frequent bouts of torpor and toward more intake of food. In males it is predicted that this increase in feeding is done in anticipation of the impending mating season, when energy requirements are high but low insect abundance and significant time spent finding a mate (and therefore not foraging) mean that food intake will be at its lowest during the animals’ entire period of activity.

In autumn, for male M. daubentonii to accommodate the high energy demands of reproduction and low energy intake and also sufficiently prepare for hibernation, Becker and colleagues report that the bats do not increase torpor, as they do in spring, but instead employ metabolic compensation to reduce resting metabolic rate. In this way, energy expenditures are reduced and thus the low amount of food the bats consume is enough for them to survive the winter. The exact mechanism allowing this reduction in resting metabolic rate is still in question, but the authors speculate it is likely due to a decrease in activity of either the digestive system or the brain.

Becker, Nina I., Marco Tschapka, Elisabeth K. V. Kalko, and Jorge A. Encarnação. “Balancing the Energy Budget in Free-Ranging Male Myotis daubentonii Bats.” Physiological and Biochemical Zoology 86:3 (May/June 2013).

Physiological and Biochemical Zoology (http://journals.uchicago.edu/PBZ) publishes original research in animal physiology and biochemistry, with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary, or comparative physiology is particularly encouraged.

Emily Murphy | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>