Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shifts in Physiological Mechanisms Let Male Bats Balance the Need to Feed and the Urge to Breed

A forthcoming article in Physiological and Biochemical Zoology reveals shifts in the mechanisms bats use to regulate metabolism throughout their seasonal activity period.

As small and active flying mammals, bats have very high mass-specific energy requirements and as such continually adjust their rates of activity and metabolism in response to ambient temperature and other seasonal variation.

Bats must carefully balance physiological mechanisms in response to variation in factors such as ambient temperature, availability of food, and mating requirements. Myotis daubentonii funnels a prey insect with the aid of the wing into the tail pouch to eat it during flight.
Photo credit: Marko König (Mammalian Ecology Group, JLU Giessen)

In particular, during the autumn mating season, male bats must carefully balance time spent foraging (to gain enough fat to last the winter hibernation) with time spent finding a mate. Because both activities require significant effort, how do male bats do it? In an upcoming issue of Physiological and Biochemical Zoology, Nina Becker and colleagues reveal that the answer lies in the bats’ resting metabolic rate.

In their study, the group monitored the thermoregulation, energy intake, activity, and metabolism of free-ranging Daubenton’s bats Myotis daubentonii during this insectivorous species’ main activity period of the year (mid-April to mid-October).

Becker et al. found that during spring, when ambient temperatures are low, prey is scarce, and the male bats are reproductively inactive, M. daubentonii used daily torpor (decreased body temperature) to balance their energy budgets.

In summer, when temperatures and abundance of insects increase, bats shift their behavior away from long and frequent bouts of torpor and toward more intake of food. In males it is predicted that this increase in feeding is done in anticipation of the impending mating season, when energy requirements are high but low insect abundance and significant time spent finding a mate (and therefore not foraging) mean that food intake will be at its lowest during the animals’ entire period of activity.

In autumn, for male M. daubentonii to accommodate the high energy demands of reproduction and low energy intake and also sufficiently prepare for hibernation, Becker and colleagues report that the bats do not increase torpor, as they do in spring, but instead employ metabolic compensation to reduce resting metabolic rate. In this way, energy expenditures are reduced and thus the low amount of food the bats consume is enough for them to survive the winter. The exact mechanism allowing this reduction in resting metabolic rate is still in question, but the authors speculate it is likely due to a decrease in activity of either the digestive system or the brain.

Becker, Nina I., Marco Tschapka, Elisabeth K. V. Kalko, and Jorge A. Encarnação. “Balancing the Energy Budget in Free-Ranging Male Myotis daubentonii Bats.” Physiological and Biochemical Zoology 86:3 (May/June 2013).

Physiological and Biochemical Zoology ( publishes original research in animal physiology and biochemistry, with a specific emphasis on studies that address the ecological and/or evolutionary aspects of physiological and biochemical mechanisms. Studies at all levels of biological organization from the molecular to the whole organism are welcome, and work that integrates levels of organization to address important questions in behavioral, ecological, evolutionary, or comparative physiology is particularly encouraged.

Emily Murphy | EurekAlert!
Further information:

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>