Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shielding body protects brain from 'shell shocking' blast injuries

29.04.2011
Even mild blast exposure damages nerve cells in mice, study shows

Stronger and tougher body armor to shield the chest, abdomen and back may be just what soldiers fighting in the Afghanistan and Iraq wars need to better protect their brains from mild injuries tied to so-called "shell shock," results of a Johns Hopkins study in mice suggest.

Such mild trauma, resulting from the initial shock of exploding mines, grenades and improvised explosive devices (IEDs) now accounts for more than 80 percent of all brain injuries among U.S. troops. Some 160,000 American veteran men and women are estimated to have sustained this kind of trauma.

"Protecting the body is absolutely essential to protecting the brain," says senior study investigator and Johns Hopkins neuropathologist Vassilis Koliatsos, M.D. "Blast-related injuries, including what we call blast-induced neurotrauma, are the signature medical events of current wars, and improvements to body armor in addition to helmet- wearing are likely going to be needed if we want to minimize their threat to our soldiers' health," says Koliatsos, a professor at the Johns Hopkins University School of Medicine.

In a report to be published in the May edition of the Journal of Neuropathology and Experimental Neurology, Koliatsos and his team used a metal shock tube specially designed at Hopkins' Applied Physics Laboratory to isolate the effects of an explosion's primary blast wave on mice.

Researchers found that a plastic glass covering around the torso of shocked mice fully protected them from any axonal nerve cell damage in critical parts of the brain responsible for body movement, including the cerebellum and the corticospinal tract, which links nerves in the brain to those in the spinal cord. Body armor also shielded mice from over 80 percent of the axonal damage observed in the brain's visual pathways when compared to mice wearing no body armor.

The study also found that wearing similarly secured plastic glass helmets conferred no greater protection from neurological damage from the initial, overpressure wave than in mice shocked without protective headgear.

Koliatsos emphasizes that these results do not undermine the need to wear a helmet to shield their head from flying shrapnel and other bomb debris and protect them from secondary blast waves, some of which are strong enough to throw bodies more than 100 feet. The study is believed to be the first to show widespread axonal damage in the brain from mild blast explosions and was designed specifically to investigate the ill effects on the body of the primary blast, of extremely fast-moving, high-pressure air, researchers say.

Indeed, the axonal damage observed from mild blast injuries was similar to that seen in many motor vehicle accidents, Koliatsos says, with blast damage possibly due to impulse stress on the brain coming from inside the body, whereas a typical car crash involves impulses coming from outside the body. In mild traumatic brain injury, fluid pressure from the initial explosion could be rippling through a soldier's chest and lungs to the brain, by way of the major blood vessels of the neck and the cerebrospinal fluid, he says. Another possible explanation is that blasts trigger inflammatory responses, which attack the brain.

"Axons can be quite elastic, and they can expand, slowly, but we suspect that if they stretch too quickly, they will suffer damage or even break," Koliatsos says.

Among the study's other findings were that unprotected mice took twice as long as mice who had worn a body shield to socialize with mice newly introduced to their surroundings. Unprotected mice also fell off a mock log-rolling test a minute earlier than shielded mice, who stood up just as long as unshocked mice who heard the blast from outside the tube.

In unshielded mice, researchers found that the lungs were the chest organ most likely to be marred by a blast wave, but the absence of any respiratory injury did not mean the brain was safeguarded, with brain injuries evident in both lung-damaged and lung-undamaged mice.

"Our results should put military physicians in the field on notice that they need to really closely monitor veterans for mild traumatic brain injuries even in the absence of any lung injury," says Koliatsos. "Regardless of what you call it -- shell shock, mild traumatic brain injury, or mild traumatic brain injury combined with post-traumatic stress disorder – it may hide a serious neurological condition." Koliatsos and colleagues will analyze brain tissue samples from recently deceased veterans who suffered mild traumatic brain injury to see if there are any permanent signs of axonal damage.

Study co-investigator Ibolja Cernak, M.D., Ph.D., medical director of the biomedicine business area in the Department of National Security Technology of the Applied Physics Laboratory, led development of the shock tube used in the study.

Researchers used a known experimental model, called the Pathology Scoring System for Blast Injuries to help set the strength of the helium blast needed to induce a mild traumatic brain injury. Blast pressure was set at roughly 10 pound-force per square inch.

Study support was provided solely by The Johns Hopkins University.

In addition to Koliatsos and Cernak, other Hopkins researchers involved in this study, conducted from 2007 to 2010, were Leyan Xu, Ph.D.; Yeajin Song, B.S.; Alena Savonenko, M.D., Ph.D.; Barbara Crain, M.D., Ph.D.; Charles Eberhart, M.D., Ph.D.; Constantine Frangakis, Ph.D.; Tatiana Melnikova, M.D., Ph.D.; Hyunsu Kim, B.S.; and Deidre Lee, M.P.H.

For additional information, go to:
http://pathology.jhu.edu/researchbrochure/division.cfm?id=14Koliatsos
http://pathology.jhu.edu/department/divisions/Neuropathology/traumatic-brain-injury.cfm
http://www.jhuapl.edu/ourwork/biomed/neurotrauma.asp
http://journals.lww.com/jneuropath/pages/currenttoc.aspx#1865725017

David March | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>