Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharpening the focus of microscopes

05.12.2011
Based on non-linear optical effects, imaging with light has reached atomic precision in the most precise microscope ever built.

A new advanced imaging scheme—with a resolution ten times better than that of its counterparts to date—can resolve objects as small as atoms1. Previously, the maximum resolution of optical instruments, including cameras and microscopes, was fundamentally limited to a precision that corresponded to approximately half of the wavelength of incoming light.


Figure 1: The optical response of a diamond crystal (left) can now be analyzed at the atomic scale with extreme ultraviolet light (center). This technique can provide additional information to the crystal structure (right) typically obtained using x-rays
Copyright : 2011 Kenji Tamasaku

The new scheme, developed by researchers from the RIKEN SPring-8 Center in Harima and Nagoya University, has a resolution up to 380 times better than the UV light used in the experiments. For microscopes using visible light, which means wavelengths of a few hundred nanometers, the best achievable resolution is around 100 nanometers, which fails to resolve the smallest structures on a computer chip. Imaging smaller nanostructures, or even atoms, requires light of much shorter wavelengths, such as x-rays that are difficult to handle, and which provide different types of images to those captured using visible light.

Led by Kenji Tamasaku of RIKEN, the researchers used a non-linear optical effect to achieve atomic resolution in diamond. Their process is based on the intrinsic interaction between the electrons of the material’s crystal atoms and UV light that splits an incoming x-ray beam into a UV beam and a lower energy x-ray beam. The combined energy of these scattered beams is the same as that of the incoming beam. This process depends strongly on the activation of the UV beam, which occurs only in the vicinity of the electrons in the atoms, and only if the optical response of the electrons is a match to the incoming x-ray beam, Tamasaku explains.

Analyzing the scattered beams allowed a precise reconstruction of the motion of the electrons under UV illumination. Using a diamond crystal as an imaging object, the researchers demonstrated a resolution of 0.054 nanometers (Fig. 1). Because Tamasaku and colleagues used a non-linear optical effect, they obtained new information not only about how electrons move but also about atomic position.

There are many possibilities for using this new method, says Tamasaku. “This technique is very useful for the study of the physical properties of materials that couple to light.” An example is the study of electronic materials, in which the sensitivity of the technique to the electron’s electronic states can be used to probe electrical charges in materials such as high-temperature superconductors. Using the team's new approach, this will now be possible with atomic resolution.

The corresponding author for this highlight is based at the Coherent X-Ray Optics Laboratory, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>