Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oh the Shark Has Pretty Teeth Dear…

24.01.2014
Atomic resolution imaging of fluorine in shark tooth enamel

Shark teeth are supposedly the healthiest of all animals because of their particularly hard enamel. Japanese researchers have now been able to use a special electron microscopy technique to image the structure of shark enamel.



In the journal Angewandte Chemie, they report on an unusually strong bond between fluorine atoms and calcium atoms, which may be responsible for the unusual hardness and cavity resistance of shark teeth.

Biominerals play an important role for all life forms. Our own bones and teeth consist of a composite material made from biomolecules and inorganic substances. Shark tooth enamel is mainly fluorapatite (Ca5[F(PO4)3]), a mineral with a hexagonal crystal structure that contains calcium, fluorine, and phosphate. But what is it that makes the shark’s tooth enamel so particularly strong? So far, all we have determined is that it has a high density of fluorapatite crystals and a low content of organic matrix.

Determining the exact structures of biominerals turns out to be distinctly difficult. In the best cases, experiments using transmission electron microscopy have been able to deliver information on the nanometer scale. Advances like aberration correction have improved the resolution of TEM, but the signals are weak and the structures extremely complex.

In addition, the electron beam damages biominerals. A team led by Yuichi Ikuhara has now been able to examine the enamel of shark teeth by TEM and scanning TEM (STEM) with minimum interference. To achieve this, the researchers from Tohoku University, the University of Tokyo, the Graduate School of Tokyo Medical and Dental University, and the Fine Ceramics Center used an aberration-corrected electron microscopy technique that gets by with a very low dose. This method works by using a smaller condenser aperture and dispersing the electron beam over a wider area of the sample than usual.

The scientists were thus able to spatially resolve each individual atom columns inside the complex fluorapatite structure. They found that shark tooth enamel consists of bundles of monocrystalline nanorods of fluorapatite with a diameter of about 50 nm. The hexagonal shape of the crystal could also be confirmed. Every hexagon consists of calcium, phosphorus, and oxygen atoms with a fluorine atom at the center. By using ab initio calculations, the researchers were able to determine that the fluorine atoms are bound to the surrounding calcium atoms with covalent–ionic mixed bonds, not ionic bonds alone as expected. This seems to be the main reason for the special cavity resistance of shark teeth.

About the Author
Dr. Yuichi Ikuhara is a Professor at Tohoku University and the University of Tokyo with appointments in materials science. His main specialty is the application of state-of-the-art transmission electron microscopy to solve fundamental issues in materials science. He is also Director of the Research Hub for Advanced Nano Characterization and Nanotechnology Platform at the University of Tokyo, and is the recipient of the Commendation for Science and Technology by MEXT of Japan and the Humboldt Research Award.

Author: Yuichi Ikuhara, Tohoku University (Japan), http://www.wpi-aimr.tohoku.ac.jp/en/research/researcher/y-ikuhara.html

Title: Fluorine in Shark Teeth: Its Direct Atomic-Resolution Imaging and Strengthening Functio

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201307689

Yuichi Ikuhara | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>