Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sharing the results of research critical to advancement of biological sciences

11.09.2009
Sharing the fruits of research in the biomedical sciences is critical for the advance of knowledge, yet with the advent of large-scale data gathering following the completion of the genome projects this is becoming harder to facilitate and more difficult to monitor, as reported in Nature today.

Dr Paul Schofield of the Department of Physiology Development and Neuroscience at the University of Cambridge chaired an influential meeting on this issue in Rome in May of this year, supported by the European Commission-funded CASIMIR project (www.casimir.org.uk).

CASIMIR is tasked to look at the factors inhibiting the free exchange of data and materials between investigators using the mouse as a model system to study human disease.

The meeting was attended by senior representatives of major international research sponsors, leading scientific journals, intellectual property and technology transfer specialists and sociologists. It endorsed the need for global coordination and effective policies to reduce barriers to the free exchange of data and materials between scientists to ensure the sharing of research results and materials to maximize research benefit, optimize the use of research sponsorship and more effectively manage and optimize the dissemination of biological research results through academic or commercial channels.

Significant consensus was achieved, and the results of this important meeting are published in Nature this week. Research on mice as models for human diseases is of major current international importance and is essential until better alternatives are found if the full societal benefits of the elucidation of the human genome are to be achieved. Better sharing of data and existing mice will reduce the need to generate new model organisms and avoid unnecessary duplication.

One of the key findings of this study is the negative impact of over-restrictive licensing by some Universities and research agencies of genetically engineered mice and embryonic stem cells - the outputs of this research - and the failure of researchers to efficiently share their research results and materials by depositing their mice and ES cells in the major public repositories now in place in Europe, North America, Japan and Australia.

The meeting set an agenda for community discussion - The Rome Agenda - also free to access online, which outlines guidelines to enable sharing of biomaterials under the least restrictive terms, avoiding restrictive material transfer agreements (MTAs) where possible. The meeting also recommended increased investment in public databases and mouse repositories to keep pace with the rapid acceleration of research in this area.

Dr Schofield said: "Sharing of data and biological resources in the post-genomic age has become crucial to the advancement of the biomedical sciences. The agreements reached in Rome will help to coordinate the development of policies and infrastructure in international science resulting in huge advantages to the research community and better value for money to the public agencies and charities who fund the majority of this research."

The Rome Agenda is intended to spark community discussion on this subject. Paul Schofield, Tania Bubela (University of Alberta, Edmonton, Canada) and other meeting participants will respond to reader comments in two online forums on Nature Network which will go live after the embargo has lifted: http://network.nature.com/groups/naturenewsandopinion/forum/topics/5433 http://network.nature.com/groups/naturenewsandopinion/forum/topics/5434

Notes to Editors:

1. The commentary piece "Post-publication sharing of data and tools" is scheduled for publication in the journal Nature on 09 September 2009.

2. Further recent discussions of some of these issues can be found on the Nature website: http://www.nature.com/news/2009/090603/full/459620a.html http://www.nature.com/nature/journal/v459/n7248/full/459752a.html

Dr. Paul Schofield | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>