Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shared Motif in Membrane Transport Proteins Found in Plants, Bacteria

04.06.2009
University of Arkansas researchers have characterized a membrane receptor protein and its binding mechanism from chloroplasts in plants and determined that it shares a commonly shaped binding site and mechanism with a similar protein found in E. coli.

The paper, published in the Journal of Biological Chemistry, was chosen as the research paper of the week for its significance and overall importance to the field.

“It’s strange to think of the processes in plants having similarities to E. coli, but they do,” said Robyn Goforth, research professor of biological sciences.

Researchers are still learning how proteins get from where they are manufactured to where they do their work. Goforth and graduate student Naomi Marty examined the path of a particular protein in plants that shepherds light-harvesting chloroplast proteins into the thylakoid membrane. Although bacteria do not have chloroplasts, they do have a similar mechanism by which proteins get transported from one location to another through the cytosolic membrane.

Goforth and Marty looked at the signal recognition particle pathway in plants, which is responsible for taking light-harvesting proteins from where they are made to where they are used. They identified the binding mechanism for the signal recognition particle receptor, a membrane-binding protein that helps bring the light harvesting chloroplast protein to the membrane and allows it to bind there.

To do this, they isolated chloroplast membranes from pea plants, then introduced the modified receptor, first taking off three amino acids, then six, then nine. They then examined the modified proteins’ ability to move light-harvesting proteins to the membrane. As a result, they were able to identify an 18-amino acid region that is essential to the protein transport process and that changes structure when interacting with the membrane. They identified two phenylalanine residues, found in the receptor proteins in both plants and bacteria, that prove essential to the signal recognition particle receptor’s role in binding proteins to the membrane.

Together with colleagues in the department of biological sciences and the department of chemistry and biochemistry, they examined the structure of the protein when it interacts in the membrane and in solution. They found that this region of the receptor protein had different structures in the two different environments.

“When you change the phenylalanine, you don't get the structural switch,” Goforth said. “This peptide is both necessary and sufficient for targeting proteins to the membrane.”

They also studied a similar transportation pathway found in E. coli, whereby certain proteins are taken to the membrane to act as exterior sensors.

“What we show here is that both the E. coli and the chloroplast receptor proteins react the same way at the membrane,” Marty said.

The team consisted of Goforth, Marty, Alicia Kight, Nathaniel Lewis, Daniel Fologea and professor Ralph Henry of the department of biological sciences and Dakshinamurthy Rajalingam and professor Suresh Kumar of the department of chemistry and biochemistry. All are researchers in the Center for Protein Structure and Function in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Robyn Goforth, research professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-3680, rgofort@uark.edu
Naomi Marty, graduate student, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-3680, nmarty@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>