Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shared Motif in Membrane Transport Proteins Found in Plants, Bacteria

University of Arkansas researchers have characterized a membrane receptor protein and its binding mechanism from chloroplasts in plants and determined that it shares a commonly shaped binding site and mechanism with a similar protein found in E. coli.

The paper, published in the Journal of Biological Chemistry, was chosen as the research paper of the week for its significance and overall importance to the field.

“It’s strange to think of the processes in plants having similarities to E. coli, but they do,” said Robyn Goforth, research professor of biological sciences.

Researchers are still learning how proteins get from where they are manufactured to where they do their work. Goforth and graduate student Naomi Marty examined the path of a particular protein in plants that shepherds light-harvesting chloroplast proteins into the thylakoid membrane. Although bacteria do not have chloroplasts, they do have a similar mechanism by which proteins get transported from one location to another through the cytosolic membrane.

Goforth and Marty looked at the signal recognition particle pathway in plants, which is responsible for taking light-harvesting proteins from where they are made to where they are used. They identified the binding mechanism for the signal recognition particle receptor, a membrane-binding protein that helps bring the light harvesting chloroplast protein to the membrane and allows it to bind there.

To do this, they isolated chloroplast membranes from pea plants, then introduced the modified receptor, first taking off three amino acids, then six, then nine. They then examined the modified proteins’ ability to move light-harvesting proteins to the membrane. As a result, they were able to identify an 18-amino acid region that is essential to the protein transport process and that changes structure when interacting with the membrane. They identified two phenylalanine residues, found in the receptor proteins in both plants and bacteria, that prove essential to the signal recognition particle receptor’s role in binding proteins to the membrane.

Together with colleagues in the department of biological sciences and the department of chemistry and biochemistry, they examined the structure of the protein when it interacts in the membrane and in solution. They found that this region of the receptor protein had different structures in the two different environments.

“When you change the phenylalanine, you don't get the structural switch,” Goforth said. “This peptide is both necessary and sufficient for targeting proteins to the membrane.”

They also studied a similar transportation pathway found in E. coli, whereby certain proteins are taken to the membrane to act as exterior sensors.

“What we show here is that both the E. coli and the chloroplast receptor proteins react the same way at the membrane,” Marty said.

The team consisted of Goforth, Marty, Alicia Kight, Nathaniel Lewis, Daniel Fologea and professor Ralph Henry of the department of biological sciences and Dakshinamurthy Rajalingam and professor Suresh Kumar of the department of chemistry and biochemistry. All are researchers in the Center for Protein Structure and Function in the J. William Fulbright College of Arts and Sciences.

Robyn Goforth, research professor, biological sciences
J. William Fulbright College of Arts and Sciences
Naomi Marty, graduate student, biological sciences
J. William Fulbright College of Arts and Sciences

Melissa Lutz Blouin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>