Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping up: Controlling a stem cell's form can determine its fate

14.09.2011
"Form follows function!" was the credo of early 20th century architects making design choices based on the intended use of the structure.

Cell biologists may be turning that on its head. New research* by a team working at the National Institute of Standards and Technology (NIST) reinforces the idea that stem cells can be induced to develop into specific types of cells solely by controlling their shape. The results may be important to the design of materials to induce the regeneration of lost or damaged tissues in the body.


Bone-like cell growth on nanofibers: confocal microscope images detail the growth of a human bone marrow stromal cell (actin filaments in the cell "skeleton" are stained orange) on a nanofiber scaffold (green). The structure of thin fibers encourages stem cells to develop into the elongated, branched form characteristic of mature bone cells. Credit: Tison, Simon/NIST

Tissue engineering seeks to repair or re-grow damaged body tissues, often using some form of stem cells. Stem cells are basic repair units in the body that have the ability to develop into any of several different forms. The NIST experiments looked at primary human bone marrow stromal cells, adult stem cells that can be isolated from bone marrow and can "differentiate" into bone, fat or cartilage cells, depending.

"Depending on what?" is one of the key questions in tissue engineering. How do you ensure that the stem cells turn into the type you need? Chemical cues have been known to work in cases where researchers have identified the proper additives—a hormone in the case of bone cells. Other research has suggested that cell differentiation on flat surfaces can be controlled by patterning the surface to restrict the locations where growing cells can attach themselves.

The experiments at NIST are believed to be the first head-to-head comparison of five popular tissue scaffold designs to examine the effect of architecture alone on bone marrow cells without adding any biochemical supplements other than cell growth medium. The scaffolds, made of a biocompatible polymer, are meant to provide a temporary implant that gives cells a firm structure on which to grow and ultimately rebuild tissue. The experiment included structures made by leaching and foaming processes (resulting in microscopic structures looking like clumps of insect-eaten lettuce), freeform fabrication (like microscopic rods stacked in a crisscross pattern) and electrospun nanofibers (a random nest of thin fibers). Bone marrow stromal cells were cultured on each, then analyzed to see which were most effective at creating deposits of calcium—a telltale of bone cell activity. Microarray analysis also was used to determine patterns of gene expression for the cultured cells.

The results show that the stem cells will differentiate quite efficiently on the nanofiber scaffolds—even without any hormone additives—but not so on the other architectures. The distinction, says NIST biologist Carl Simon, Jr., seems to be shape. Mature bone cells are characteristically long and stringy with several extended branches. Of the five different scaffolds, only the nanofiber one, in effect, forces the cells to a similar shape, long and branched, as they try to find anchor points. Being in the shape of a bone cell seems to induce the cells to activate the genes that ultimately produce bone tissue.

"This suggests that a good strategy to design future scaffolds would be to take into account what shape you want to put the cells in," says Simon, adding, "That's kind of a tall order though, you'd have to understand a lot of stuff: how cell morphology influences cell behavior, and then how the three-dimensional structure can be used to control it." Despite the research still to be done on this method, the ability to physically direct cell differentiation by shape alone potentially would be simpler, cheaper and possibly safer than using biochemical supplements, he says.

The work was supported in part by the National Institute of Dental and Craniofacial Research, National Institutes of Health.

* G. Kumar, C.K. Tison, K. Chatterjee, P.S. Pine, J.H. McDaniel, M.L. Salit, M.F. Young and C.G. Simon, Jr. The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials (2011), doi:10.1016/j.biomaterials.2011.08.054.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>