Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-shifting coral evade identification

25.02.2009
The evolutionary tendency of corals to alter their skeletal structure makes it difficult to assign them to different species.

Researchers writing in the open access journal BMC Evolutionary Biology have used genetic markers to examine coral groupings and investigate how these markers relate to alterations in shape, in the process discovering that our inaccurate picture of coral species is compromising our ability to conserve coral reefs.

Zac Forsman led a team of researchers from University of Hawaii at Manoa's Hawaii Institute of Marine Biology who carried out the molecular studies. He said, "Our study represents important progress towards understanding the evolution and biodiversity of corals, and provides a foundation for future work. As coral ecosystems are increasingly threatened, we need to understand how many groups exist that can interbreed rather than judging potential for extinction by just looking at groups according to their shape alone".

Skeletal shape is currently used to differentiate coral species. According to the authors, this can make them notoriously difficult to tell apart as shape can change independent of reproductive isolation or evolutionary divergence, the factors most commonly understood to define 'species'. By studying the genetic characteristics of corals at several regions of the genome, Forsman and his colleagues were able to confirm many morphological species groupings, while finding evidence that appearances are very deceiving in a few groups; some corals were genetically indistinguishable despite differing in size and shape, such as branching and massive corals, whereas some corals with similar appearance had deep genetic divergence. The authors said, "Our analysis of multiple molecular markers reveals previously unrecognised cryptic patterns of species diversity within the coral genus Porites. Our approach shows that morphological characters previously thought capable of delineating species must be re-examined to accurately understand patterns of evolution, and biodiversity in reef-building coral".

The authors' research will be very useful in aiding efforts to understand and preserve coral biodiversity. According to Forsman, "Currently used species definitions are likely to be misleading and confound attempts to identify, understand, and conserve coral biodiversity or to recognize its loss".

Charlotte Webber | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

nachricht World first for reading digitally encoded synthetic molecules
17.10.2017 | CNRS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>