Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape, fit of reproductive organs evolve quickly and in concert, leaving size behind

16.12.2011
Believed critical for determining which individuals can -- or cannot -- successfully reproduce with each other, genitalia not only figure prominently in the origin of new species, but are also typically the first type of trait to change as new species form.

Today, new international research led by Indiana University shows that as populations and species diversify, the exact shape and fit of genitalia steals the show over size.

In data gathered from populations isolated for less than 50 years, to species separated for millions of years, researchers studying scarab beetles have shown that both male and female genitalia have evolved extremely rapidly and have done so along parallel timetables. But most surprisingly, this codivergence occurred much faster in, or was even restricted to, genital shape rather than size.

"Parallel evolutionary divergence in male and female genitalia was something scientists long suspected or assumed, but we've had little or no data to support this assumption," said lead author Armin Moczek, an associate professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "But to see that this parallel divergence is so much faster for genital shape than size is a big surprise."

Too much focus in past research on sizes, rather than shapes of genitalia -- which is much harder to measure in arthropods -- may have misled past research in judging how genitalic evolution may enable diverging populations to evolve into separate species unable to hybridize.

Just as interesting is the remarkably short time frame -- as short as populations being separated by 50 years -- that would support the notion that it may be surprisingly easy for the genitalia of males and females to evolve concomitantly, and for males and females of different populations to diverge from each other to a degree approximating what is normally seen only between species separated for more than 10,000 years.

"If it is correct that such divergences aid in establishing reproductive isolation -- something we did not test, but which is widely assumed -- then by extension this finding suggests that evolving new species, or at least getting populations started in the process, may be much easier and faster than we generally assume," Moczek said.

In this research, the team examined the female genital tract and the male copulatory organs of eight populations of five different species of Onthophagus beetles, including three populations in the Eastern U.S., Western Australia and Eastern Australia which were established from an ancestral Mediterranean population in the 1970s as part of a biocontrol program.

The researchers focused on male and female genitalic parts that interact physically during copulation -- the female pygidium, a moveable plate that provides grooves and pits that serve as anchor points for the correct positioning of male genitalia, and the male parameres, part of the male copulatory organ, which includes projections that fit into said grooves and pits of the female pygidium.

The research team then examined how shapes and sizes of these interacting female and male copulatory structures had diverged across populations and species using landmark-based geometric morphometric tools, a key methodology that enabled the team to examine differences in shape irrespective of differences in size.

"Once we compared the patterns of divergence across sexes we found that the relative sizes of male and female copulatory organs do evolve, but do so independent of each other. But for genital shape, we found a striking signature of parallel divergence, suggesting that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes," Moczek said. "Our results also suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame."

The National Science Foundation's support of Moczek's research in the evolutionary developmental biology of horned beetles has provided much of the infrastructure that enabled this study.

Co-authors with Moczek on the research article "Shape -- but Not Size -- Codivergence Between Male and Female Copulatory Structures in Onthophagus Beetles," first available online here Dec. 14, in PLoS ONE, were Anna L. M. Macagno, Astrid Pizzo, Claudia Palestrini and Antonio Rolando of Università degli Studi di Torino; and Harald F. Parzer, also of IU's Department of Biology.

For more information, contact Steve Chaplin, Indiana University Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting IU science news: @IndianaScience

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>