Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape, fit of reproductive organs evolve quickly and in concert, leaving size behind

16.12.2011
Believed critical for determining which individuals can -- or cannot -- successfully reproduce with each other, genitalia not only figure prominently in the origin of new species, but are also typically the first type of trait to change as new species form.

Today, new international research led by Indiana University shows that as populations and species diversify, the exact shape and fit of genitalia steals the show over size.

In data gathered from populations isolated for less than 50 years, to species separated for millions of years, researchers studying scarab beetles have shown that both male and female genitalia have evolved extremely rapidly and have done so along parallel timetables. But most surprisingly, this codivergence occurred much faster in, or was even restricted to, genital shape rather than size.

"Parallel evolutionary divergence in male and female genitalia was something scientists long suspected or assumed, but we've had little or no data to support this assumption," said lead author Armin Moczek, an associate professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "But to see that this parallel divergence is so much faster for genital shape than size is a big surprise."

Too much focus in past research on sizes, rather than shapes of genitalia -- which is much harder to measure in arthropods -- may have misled past research in judging how genitalic evolution may enable diverging populations to evolve into separate species unable to hybridize.

Just as interesting is the remarkably short time frame -- as short as populations being separated by 50 years -- that would support the notion that it may be surprisingly easy for the genitalia of males and females to evolve concomitantly, and for males and females of different populations to diverge from each other to a degree approximating what is normally seen only between species separated for more than 10,000 years.

"If it is correct that such divergences aid in establishing reproductive isolation -- something we did not test, but which is widely assumed -- then by extension this finding suggests that evolving new species, or at least getting populations started in the process, may be much easier and faster than we generally assume," Moczek said.

In this research, the team examined the female genital tract and the male copulatory organs of eight populations of five different species of Onthophagus beetles, including three populations in the Eastern U.S., Western Australia and Eastern Australia which were established from an ancestral Mediterranean population in the 1970s as part of a biocontrol program.

The researchers focused on male and female genitalic parts that interact physically during copulation -- the female pygidium, a moveable plate that provides grooves and pits that serve as anchor points for the correct positioning of male genitalia, and the male parameres, part of the male copulatory organ, which includes projections that fit into said grooves and pits of the female pygidium.

The research team then examined how shapes and sizes of these interacting female and male copulatory structures had diverged across populations and species using landmark-based geometric morphometric tools, a key methodology that enabled the team to examine differences in shape irrespective of differences in size.

"Once we compared the patterns of divergence across sexes we found that the relative sizes of male and female copulatory organs do evolve, but do so independent of each other. But for genital shape, we found a striking signature of parallel divergence, suggesting that male and female copulatory structures that are linked mechanically during copulation may diverge in concert with respect to their shapes," Moczek said. "Our results also suggest that genital divergence in general, and co-divergence of male and female genital shape in particular, can evolve over an extraordinarily short time frame."

The National Science Foundation's support of Moczek's research in the evolutionary developmental biology of horned beetles has provided much of the infrastructure that enabled this study.

Co-authors with Moczek on the research article "Shape -- but Not Size -- Codivergence Between Male and Female Copulatory Structures in Onthophagus Beetles," first available online here Dec. 14, in PLoS ONE, were Anna L. M. Macagno, Astrid Pizzo, Claudia Palestrini and Antonio Rolando of Università degli Studi di Torino; and Harald F. Parzer, also of IU's Department of Biology.

For more information, contact Steve Chaplin, Indiana University Communications, at 812-856-1896 or stjchap@iu.edu. Tweeting IU science news: @IndianaScience

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>