Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shallow water habitats important for young salmon and trout

23.08.2010
Research carried out at the University of Gothenburg shows that competition from older fish causes young salmon and trout to seek refuge in shallow water. Preserving such habitats may, therefore, be important for the survival of the young fish.

Using field studies in watercourses north of Gothenburg and laboratory experiments in Denmark and Scotland, scientist Rasmus Kaspersson at the Department of Zoology, University of Gothenburg, has studied the competition between different age groups of Atlantic salmon and brown trout.

Forced into shallow water

It has previously been believed that poor swimming ability forces young salmon and trout to remain in shallow habitats where the water flows at a lower velocity. Rasmus Kaspersson's work, however, shows that it is rather competition for habitats from the older fish that compels young fish to use shallow water. Rasmus Kaspersson's experiments show that young-of-the-year move to deeper parts of the watercourse as soon as the number of older individuals is reduced.

"This suggests that young-of-the-year actually prefer to live in deep, rapidly flowing water, where they can find food easier and are protected from predatory birds and mink", says Rasmus Kaspersson.

Population determines survival

In the natural world, however, older and younger individuals are both present, and shallow habitats then function as refuge for the younger fish. The weight and length of young-of-the-year increased when older individuals were removed from parts of the watercourses studied. Thus it seems that the population of older salmon and trout in a watercourse affects indirectly the number of young-of-the-year that reach adulthood.

More protected habitats required

The results presented in Rasmus Kaspersson's thesis show how important it is to preserve and restore shallow parts of Swedish watercourses with low-velocity flow. This will provide more protected habitats for the young fish.

The thesis Age-class interactions in Atlantic salmon and brown trout: Effects on habitat use and performance was successfully defended on 27 May 2010.

Journal: Journal of Fish Biology 74 (10), 2196-2215.
DOI: 10.1111/j.1095-8649.2009.02227.x
Title: Density-dependent growth rate in an age-structured population: A field study on stream-dwelling brown trout Salmo trutta

Authors: Kaspersson R. and Höjesjö J.

Contact:
Rasmus Kaspersson, Department of Zoology, University of Gothenburg
Mobile: +46 702 979496
Telephone: +46 31 786 3547
rasmus.kaspersson@zool.gu.se

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/22214
http://www.gu.se

Further reports about: Atlantic Atlantic salmon Rasmus Swedish watercourses Trout Zoology

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>