Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SFU researchers test sugary solution to Alzheimer’s

29.02.2012
Slowing or preventing the development of Alzheimer’s disease, a fatal brain condition expected to hit one in 85 people globally by 2050, may be as simple as ensuring a brain protein’s sugar levels are maintained.
That’s the conclusion seven researchers, including David Vocadlo, a Simon Fraser University chemistry professor and Canada Research Chair in Chemical Glycobiology, make in the latest issue of Nature Chemical Biology.

The journal has published the researchers’ latest paper Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation.

Vocadlo and his colleagues describe how they’ve used an inhibitor they’ve chemically created — Thiamet-G — to stop O-GlcNAcase, a naturally occurring enzyme, from depleting the protein Tau of sugar molecules.

“The general thinking in science,” says Vocadlo, “is that Tau stabilizes structures in the brain called microtubules. They are kind of like highways inside cells that allow cells to move things around.”

Previous research has shown that the linkage of these sugar molecules to proteins, like Tau, in cells is essential. In fact, says Vocadlo, researchers have tried but failed to rear mice that don’t have these sugar molecules attached to proteins.

Vocadlo, an accomplished chess player in his spare time, is having great success checkmating troublesome enzymes with inhibitors he and his students are creating in the SFU chemistry department’s Laboratory of Chemical Glycobiology.

Research prior to Vocadlo’s has shown that clumps of Tau from an Alzheimer brain have almost none of this sugar attached to them, and O-GlcNAcase is the enzyme that is robbing them.

Such clumping is an early event in the development of Alzheimer’s and the number of clumps correlate with the disease’s severity.

Scott Yuzwa and Xiaoyang Shan, grad students in Vocadlo’s lab, found that Thiamet-G blocks O-GlcNAcase from removing sugars off Tau in mice that drank water with a daily dose of the inhibitor. Yuzwa and Shan are co-first authors on this paper.

The research team found that mice given the inhibitor had fewer clumps of Tau and maintained healthier brains.

“This work shows targeting the enzyme O-GlcNAcase with inhibitors is a new potential approach to treating Alzheimer’s,” says Vocadlo. “This is vital since to date there are no treatments to slow its progression.

“A lot of effort is needed to tackle this disease and different approaches should be pursued to maximize the chance of successfully fighting it. In the short term, we need to develop better inhibitors of the enzyme and test them in mice. Once we have better inhibitors, they can be clinically tested.

Carol Thorbes (SFUPAMR) | EurekAlert!
Further information:
http://www.sfu.ca

Further reports about: Alzheimer Glycobiology O-GlcNAcase SFU Tau-Protein Thiamet-G sugar molecules

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>