Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SF State biologists tag 'zombees' to track their flight

07.09.2012
ZomBeeWatch.org team is outfitting infected honeybees with tiny radio trackers to learn more about parasitized honeybees

After last year's accidental discovery of "zombie"-like bees infected with a fly parasite, SF State researchers are conducting an elaborate experiment to learn more about the plight of the honey bees.


Scientists are tagging "zombie" honeybees with tiny radio trackers to monitor their flight behavior. Credit: Chris Quock

The scientists are tagging infected bees with tiny radio trackers, and monitoring the bees' movements in and out of a specially designed hive on top of the Hensill Hall biology building on campus. At the same time, they are monitoring hives on campus and on the roof of the San Francisco Chronicle's offices for further signs of the mysterious parasite and encouraging the public to participate through a new website ZomBeeWatch.org.

After being parasitized by the Apocephalus borealis fly, the bees abandon their hives and congregate near outside lights, moving in increasingly erratic circles on the ground before dying. The phenomenon was first discovered on campus by SF Professor of Biology John Hafernik, and reported last year in the research journal PLoS ONE, with former SF State master's student Andrew Core as lead author.

It's unclear yet how big of a threat the emerging fly parasite might be to the health of honey bee colonies, or if the parasite is linked to the colony collapse disorder that has devastated honey bee colonies in the United States, say Hafernik and colleagues.

To learn more about how the parasitic fly affects the bees' behavior, the scientists have built a system to track the movements of infected bees in and out of a hive. Each bee has a set of tiny radio frequency trackers -- each no bigger than a fleck of glitter -- attached to the top of its thorax. The bees leave and return to the hive through a small tube outfitted with dual laser readers that interact with the individual trackers.

The readers, which operate in a similar way to barcode scanners in a grocery checkout lane, create "virtually a 24-hour record of bees going in and out of the hive to forage," said Christopher Quock, an SF State master's biology student working on the hive's design together with bee keeper Robert MacKimmie.

Knowing exactly when bees leave--and whether they come back--is important for understanding how and when the parasites might cause the bees to abandon their hives, Quock explained. The original study found bees disoriented and dying at night, for instance, but the researchers aren't sure whether the infected bees only leave their hives to fly in the dark.

Quock's challenge has been to create a hive design where the bees "still have room to do their normal behavior." To get a unique identification and time stamp for each bee, he said, the insects have to pass one at a time under the laser readers through a narrow passage.

Quock, who began work on the bees as an undergraduate, has also been perfecting a method for studying infected bees in the lab. "Hopefully in the long run, this information might help us understand how much of a health concern these flies are for the bees, and if they truly do impede their foraging behavior," he said. "We also want to know whether there are any weak links in the chain of interactions between these flies and honey bees that we could exploit to control the spread of this parasite."

In addition to understanding how parasitism affects foraging behavior, Andrew Zink, SF State assistant professor of biology and Quock's advisor, said that the tracking project might eventually shed light on how the infected bees behave inside the hive. "We are also interested in knowing if parasitized foragers are the recipients of aggression by other workers, for example if they're expelled from the hive, or if parasitized foragers behave in ways that disrupt hive productivity."

If enough of the parasitized bees do the wrong "waggle" dances to send unparasitized foragers off in the wrong directions for food, or distract unparasitized foragers through antagonistic interactions, the hive's productivity could falter. Combined with the premature deaths of the infected foragers, Zink said, these within-hive effects "would represent a two-fold cost of fly parasitism for the hive."

The radio tracking study "could give us a hint" as to why parasitism alters bee behavior, Hafernik said. "It might just be that having a maggot in the back is uncomfortable."

The PLoS ONE study was heavily covered in the media and some unusual outlets. "Our study got picked up on zombie discussion boards, and zombie blogs," Hafernik recalled. "And for the most part the discussion was all very respectful and zombie lovers were interested."

The researchers hope to capitalize on the interest in the bees with a citizen science project called ZomBee Watch. The project encourages bee watchers to help map the parasite's spread by uploading photos of possible parasitized bees to a central website.

SF State is the only master's-level public university serving the counties of San Francisco, San Mateo and Marin. The University enrolls nearly 30,000 students each year and offers nationally acclaimed programs in a range of fields -- from creative writing, cinema and biology to history, broadcast and electronic communication arts, theatre arts and ethnic studies. The University's more than 212,000 graduates have contributed to the economic, cultural and civic fabric of San Francisco and beyond.

Nan Broadbent | EurekAlert!
Further information:
http://www.sfsu.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>