Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sexual selection by sugar molecule helped determine human origins

11.10.2011
Researchers at the University of California, San Diego School of Medicine say that losing the ability to make a particular kind of sugar molecule boosted disease protection in early hominids, and may have directed the evolutionary emergence of our ancestors, the genus Homo.

The findings, published in this week's early online edition of the Proceedings of the National Academy of Sciences, are among the first evidence of a novel link between cell surface sugars, Darwinian sexual selection, and immune function in the context of human origins

Sialic acids are sugar molecules found on the surfaces of all animal cells, where they serve as vital contact points for interaction with other cells and with the surrounding environment, including as targets for invasive pathogens. For millions of years, the common ancestors of humans and other apes shared a particular kind of sialic acid known as N-glycolylneuraminic acid or Neu5Gc. Then, for reasons possibly linked to a malarial parasite (http://health.ucsd.edu/news/2005/Pages/09_08_Varki.aspx) that bound Neu5Gc, a gene mutation three million or so years ago inactivated the human enzyme involved in making the molecule. Instead, humans began producing more of a slightly different form of sialic acid called Neu5Ac, the precursor of Neu5Gc.

"This occurred at about the same time as early humans were apparently becoming major predators in their environment," said Pascal Gagneux, PhD, an evolutionary biologist and associate professor of cellular and molecular medicine at UC San Diego. "It's hard to be sure exactly what happened because evolution works on so many things simultaneously, but the change in sialic acid meant that early humans developed an immune response to Neu5Gc. It became viewed by their immune systems as foreign, something to be destroyed. At about the same time, they started eating red meat, a major source of Neu5Gc, which may have further stimulated the immune response."

Gagneux and colleagues say this strong immune reaction to Neu5Gc likely had a profound effect upon early human reproduction. In all mammals, the biological costs of pregnancy for the female can be huge, sometimes even life-threatening, and so it behooves females to ensure only the best-matching sperm successfully fertilize an egg. The scientists hypothesized that anti-Neu5Gc antibodies would target Neu5Gc-positive sperm or fetal tissues in early humans, kill them and thus reduce the chances of reproductive success.

The researchers tested the idea by exposing chimpanzee sperm, whose cell surface sugars are more than half non-human sialic acids, to human anti-Neu5Gc antibodies. The antibodies bound and killed the ape sperm in vitro. The scientists then mated female mice genetically altered to lack Neu5Gc and immunized to produce anti-Neu5Gc antibodies with Neu5Gc-positive males. The fertility rate for the females was measurably lower due to pre-zygotic incompatibility – the anti-sperm effects of female antibodies.

"Over time, this incompatibility would reduce and then eliminate individuals with Neu5Gc," said Gagneux. "Oddly enough, based on our theoretical model, the process works faster when the fertility rate is only slightly decreased, rather than producing 100 percent infertility."

Gagneux noted that the findings add further weight to the concept of "speciation by infection," in which a combination of infectious diseases suffered by a particular population could predispose that population to diverge from other populations due to reproductive incompatibility. In the case of early humans, one driver may have been female immunity to Neu5Gc.

Previous studies (http://ucsdnews.ucsd.edu/newsrel/health/Varki%208%2022.htm) have shown that the loss of Neu5Gc occurred about two to three million years ago, which happens to be about the time of emergence of Homo ergaster/erectus, the likely ancestor of humans.

"We suggest that the immune mechanism described here was involved in the origin of the genus Homo," said study co-author Ajit Varki, MD, professor of medicine and cellular and molecular medicine and director of the Center for Academic Research and Training in Anthropogeny at UC San Diego.

Co-authors of the paper are Darius Ghaderi, Fang Ma, Miriam Cohen, Patrick Secrest and Rachel E. Taylor, all of the Center for Academic Research and Training in Anthropogeny, Glycobiology Research and Training Center and departments of Medicine and Cellular and Molecular Medicine, UC San Diego; and Stevan Springer, Department of Biology, University of Washington, Seattle.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>