Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Serotonin Mediates Exercise-Induced Generation of New Neurons

13.05.2013
Mice that exercise in running wheels exhibit increased neurogenesis in the brain. Crucial to this process is serotonin signaling.

These are the findings of a study by Dr. Friederike Klempin, Daniel Beis and Dr. Natalia Alenina from the research group led by Professor Michael Bader at the Max Delbrück Center (MDC) Berlin-Buch. Surprisingly, mice lacking brain serotonin due to a genetic mutation exhibited normal baseline neurogenesis. However, in these serotonin-deficient mice, activity-induced proliferation was impaired, and wheel running did not induce increased generation of new neurons. (Journal of Neuroscience, Doi:10.1523/JNEUROSCI.5855-12.2013)*.


Wheel-running Mouse
(Photo: Friederike Klempin and Daniel Beis/ Copyright: MDC)


In wheel-running mice, the number of proliferating cells (red) that become neurons (green) in the hippocampus is increased, provided they have serotonin (left). In mice that due to a genetic mutation cannot produce serotonin, the number of proliferating cells is not increased following exercise (right).
(Photo: Friederike Klempin/ Copyright: MDC)

Scientists have known for some time that exercise induces neurogenesis in a specific brain region, the hippocampus. However, until this study, the underlying mechanism was not fully understood. The hippocampus plays an important role in learning and in memory and is one of the brain regions where new neurons are generated throughout life.

Serotonin facilitates precursor cell maturation
The researchers demonstrated that mice with the ability to produce serotonin are likely to release more of this hormone during exercise, which in turn increases cell proliferation of precursor cells in the hippocampus. Furthermore, serotonin seems to facilitate the transition of stem to progenitor cells that become neurons in the adult mouse brain.

For Dr. Klempin and Dr. Alenina it was surprising that normal baseline neurogenesis occurs in mice that, due to a genetic mutation, cannot produce serotonin in the brain. However, they noted that some of the stem cells in serotonin-deficient mice either die or fail to become neurons.

Yet, these animals seem to have a mechanism that allows compensation for the deficit, in that progenitor cells, an intermediate stage in the development from a stem cell to a neuron, divide more frequently. According to the researchers, this is to maintain the pool of these cells.
However, the group of wheel-running mice that do not produce serotonin did not exhibit an exercise-induced increase in neurogenesis. The compensatory mechanism failed following running. The researchers concluded: “Serotonin is not necessarily required for baseline generation of new neurons in the adult brain, but is essential for exercise-induced hippocampal neurogenesis.”

Hope for new approaches to treat depression and memory loss in the elderly
Deficiency in serotonin, popularly known as the “molecule of happiness”, has been considered in the context of theories linking major depression to declining neurogenesis in the adult brain. “Our findings could potentially help to develop new approaches to prevent and treat depression as well as age-related decline in learning and memory,” said Dr. Klempin and Dr. Alenina.

*Serotonin is required for exercise-induced adult hippocampal neurogenesis

Friederike Klempin1,*,#, Daniel Beis1,#, Valentina Mosienko1, Gerd Kempermann2,3, Michael Bader1, and Natalia Alenina1,*

1Max-Delbruck-Center for Molecular Medicine (MDC), 13125 Berlin, Germany
2Center for Regenerative Therapies Dresden (CRTD), 01307 Dresden, Germany
3German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany

* Corresponding authors # contributed equally

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.mdc-berlin.de/40955177/en/news/2013/20130513-serotonin_mediates_exercise-induced_genera

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>