Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Sequencing Technique Could Boost Pine Beetle Fight, Improve Cancer Research

17.09.2009
UBC researchers have helped developed a cheaper, faster way to compile draft genome sequences that could advance the fight against mountain pine beetle (MPB) infestation and improve cancer research.

Current sequencing methods have a variety of advantages and disadvantages--including the cost involved. Dr Steven Jones and colleagues at UBC, the BC Cancer Agency and Simon Fraser University have combined cutting edge hardware with novel software to compile genome sequences at a fraction of the cost of previous methods.

The technique is outlined in the current issue of the journal Genome Biology.

Using the new approach, the research team--which also includes UBC's Joerg Bohlmann, Colette Breuil and Richard Hamelin--has compiled the first complete genome sequence of a fungus (Grosmannia clavigera) that is key to the mountain pine beetle infestation process.

“The key to better preparedness for future forest health crises such as the current mountain pine beetle epidemic lies in better understanding of the three main players–the trees, the bark beetles and a fungus–and their complex interactions,” said Bohlmann, Distinguished University Scholar and professor at UBC’s Michael Smith Laboratories.

“The infestation has affected 10 to 14 million hectares of pine forests in British Columbia. We can’t fight an enemy if we don’t know what it’s made of. The complete genome of the fungus brings us one step closer to winning the battle."

By triggering and overwhelming the trees’ defence mechanism, the fungus weakens the trees and creates an ideal environment for beetles to nest. It also stains the wood blue in the process, making the MPB-affected wood less marketable.

“This study has much wider research implications. What we learned from assembling the draft sequence of a fungus, we can now apply to sequencing human genomes,” says Jones, Head of Bioinfomatics at the BC Cancer Agency’s Genome Sciences Centre. “We're now using this novel approach to decode cancer tumours.”

“The ability to combine molecular biology techniques and computational approaches in this way really helps establish British Columbia as one of the leading jurisdictions in genome science.”

The research was partially funded by Genome BC, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Ministry of Forests, the Natural Resources Canada Genomics program, and the BC Cancer Foundation.

Brian Lin | EurekAlert!
Further information:
http://www.genomebiology.com
http://www.ubc.ca

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>